- Using Soil Moisture Observations to Study Climate Variations, to Evaluate Climate Models, and as Ground Truth for Remote Sensing
- Soil moisture is an important variable in the climate system. Understanding and predicting variations of surface temperature, drought, and flood depend critically on knowledge of soil moisture variations, as do impacts of climate change and seasonal forecasting. An observational data set of actual in situ measurements is crucial for model development and evaluation, and as ground truth for remote sensing. I will describe the Global Soil Moisture Data Bank, a web site (http://envsci.rutgers.edu/~robock/) dedicated to collection, dissemination, and analysis of soil moisture data from around the globe. The Global Soil Moisture Data Bank is a resource for the remote sensing, climate modeling and climate analysis communities. We currently have soil moisture observations for over 400 stations from a large variety of global climates, including from the former Soviet Union, China, Mongolia, India, and the US. I will give examples of several different uses of these data sets. These include the analysis of interseasonal, interannual and interdecadal variations in soil moisture, determination of the important scales of soil moisture variations, and the application of this result to the representativeness of our current soil moisture network and to recommendations about spatial and temporal scales of climate modeling and satellite remote sensing of soil moisture. We also use these data to evaluate calculations of soil moisture by land surface models, including PILPS Phase 2(d), reanalyses, AMIP, and the Global Soil Wetness Experiment, and as ground truth for passive microwave remote sensing of soil moisture. The scale of temporal variation of soil moisture observed in Illinois, Russia, China, and Mongolia is about 2 months in all cases and the spatial scale in all these regions is about 500 km. These scales are controlled by atmospheric forcing. Therefore, the new soil moisture network in Oklahoma is exceedingly dense for climate applications, but may be fine for initializing short-term weather forecasts. Most land surface schemes have a hard time simulating the actual observed seasonal and interannual variations of soil moisture, but produce anomalies that are close to observations. Upward trends of summer soil moisture are observed in Russia and Mongolia. Remote sensing using SMMR data over Illinois produces quite good results.
- Volcanic Eruptions and Climate: Winter Warming and Summer Cooling
- Large volcanic eruptions inject sulfur gases into the stratosphere, which convert to sulfate aerosols with an e-folding residence time of about 1 year. Large ash particles fall out much quicker. The radiative and chemical effects of this aerosol cloud produce responses in the climate system. By scattering some solar radiation back to space, the aerosols cool the surface, but by absorbing both solar and terrestrial radiation, the aerosol layer heats the stratosphere. For a tropical eruption, this heating is larger in the tropics than in the high latitudes, producing an enhanced pole-to-equator temperature gradient, especially in winter. During the winter in the Northern Hemisphere following every large tropical eruption of the past century, surface air temperatures over North America, Europe, and East Asia were warmer than normal, while they were colder over Greenland and the Middle East. This pattern and the coincident atmospheric circulation correspond to the positive phase of the Arctic Oscillation. In spite of the decrease in surface solar heating, surface air temperature increases in high and midlatitudes of the Northern Hemisphere in the winter because of changes in tropospheric circulation caused by stratosphere-troposphere dynamical coupling. Using the Max Planck Institute ECHAM4 and the Geophysical Fluid Dynamics Laboratory SKYHI GCMs, we have successfully simulated this response following the 1991 Mount Pinatubo eruption. This result will allow us to produce better seasonal forecasts for the Northern Hemisphere winter following the next large tropical eruption. It also shows that stratospheric forcing of the climate system must be considered along with sea surface temperature anomalies when making seasonal forecasts, especially in mid and high latitudes in the winter.
『水資源マネジメントと水環境 --原理・規則・事例研究--』が出版されました。600ページ以上、定価10,000円という大著です。
Neil S. Grigg著、浅野 孝 監訳、虫明 功臣、池淵 周一、山岸 俊之訳
技法堂出版、2000年8月24日1版1刷発行、ISBN 4-7655-1607-5
その他は衛星データを使用した巨大地球儀等の展示や、 (地球観測に関係した?)パソコンゲームや (地球観測に関係した?)プリクラなども体験型マシンとして設置されている様です。 大学や企業関係の(真面目な?)展示も予定されています。 主催者側のねらいはずばり
- 1日目<8月26日(土)> 13:30〜15:00
- 「米ちゃんのおもしろ科学実験」 サイエンスプロデューサー 米村 傳治郎
- 1日目<8月26日(土)> 15:10〜16:10
- 「水の惑星を宇宙から探る」 東京大学生産技術研究所 助教授 沖 大幹
- 2日目<8月27日(日)> 13:30〜14:30
- 「宇宙科学と地球・生命の再発見」 文部省宇宙科学研究所 教授 的川 泰宣
- 2日目<8月27日(日)> 14:30〜15:30
- 「宇宙から見る--古代から未来まで」 東海大学情報技術センター 教授 坂田 俊文
- 「スペースシャトルによる地球観測(STS-99)」 〜毛利宇宙飛行士からのメッセージ〜
- 2日目<8月27日(日)> 15:30〜16:30
- NHKハイビジョン映像上映 「ハイビジョン宇宙へ 毛利さんと飛ぶ」
「夏休みの自由課題のネタ提供します、宿題が気になる親子連れ大集合!」ではないかと推測されますが、 なんせ入場無料ですので、涼みに行っていただくのも良いかと存じます。
「ぐるぐるめぐる地球の水の七不思議」とか「美しき水の惑星、地球(テラ)」 とかいうタイトルにすればバランスがとれましたかねぇ?後日談: 沖はこの後、病に倒れました。 クーラーの効きすぎた控室のせいではないかと思いますが、 タイでの仕事がきつすぎたせいもあるかも知れません。
「Study on the Estimation of Global Soil Erosion」です。
(記:安形 康)
『科学と社会は21世紀の水危機を救えるか? ---世界各地からのレポート---』
9:30 開会の辞 竹内 邦良 9:40 主催者挨拶 虫明 功臣 10:00 第一部 水と科学をめぐる総合的国際情勢 Water under pressure John Rodda (IAHS) Current and expected international research priorities in hydrology Andras Szollosi-Nagy (UNESCO) Science and and operational practice -- a powerful partnership Arthur Askew (WMO) 11:30 第二部 Perception of risk of flooding, case of 1995 floods in Norway Irina Krasovskaia (Norway) Water problems of Eastern Europe, a region-in-transition Zbigniew Kundzewicz (Poland) 13:30 第二部(続き) Water problems and opportunities in hydrological sciences in China Xia Jun (China) Challenges and opportunities for water resources management in South-East Asia Ashim Das Gupta (Thailand) Some scientific challenges in Southe American water resources development Carlos Tucci (Brazil) Water problems in Africa: how can hydrological sciences help? Lekan Oyebande (Nigeria) 16:00 第三部 Regional/Macro-scale hydrological modelling - a Scandinavian experience Lars Gottschalk (Norway) Multifractals as a tool to overcome scale problems in hydrology Pierre Hubert (France) World Water Development Report and World Water Assessment Program Gordon Young (UNESCO)
モンスーン予測とシミュレーションの問題点 | 東京大学気候システム研究センター | 木本 昌秀 |
GAMEで何がわかったか | 東京大学生産技術研究所 | 沖 大幹 |
アジアモンスーン/水循環研究の新たな展開 | 東京大学大学院工学系研究科 | 小池 俊雄 |
(記:安形 康)
どこ | タイトル | 著者 | ページ |
---|---|---|---|
巻頭言 | アジア水文・水資源学会の設立に向けて −第7期学会長に就任して− |
虫明功臣 | 421-422 |
新刊紹介 | 「水資源マネジメントと水環境 −原理・規制・事例研究−」 |
虫明功臣・村上雅博 | 496 |
シリーズ 「発想のたまご」 |
水文・水資源学の学際(1) 元プログラマの見た水文モデル界の現状と将来 |
安形 康 | 511-512 |