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1. Introduction

Rivers play an important role as a component of the climate system and
as a freshwater supplying system for both human beings and ecosystems.

[Observations] In addition to in-situ observation of discharge, advancement of
satellite remote sensing reveals various information on surface waters.

8 GRACE: Water Storage
)| [Tapley, 2004]
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@ Surface Water Elevation
: [Alsdorf, 2007]
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[Modeling] On the other hand, global river routing models have mainly
focused on simulation of river discharge. Prediction of water surface elevation
or inundated are is not realistically incorporated in global models.

=> Dynamics of surface waters are regulated by smaller topography than the
resolutions of global models.



1. Introduction

[Dataset] Global hydro-geographical dataset
at fine-resolution (<1 km) is already provided
based on satellite observations.
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1. Introduction
[Dataset] Global hydro-geographical dataset

at fine-resolution (<1 km) is already provided WaterGAP:
based on satellite observations. “Conceptual” Water Flow
| precipitation P [Gunter, 2007]
[Global] Global-scale models represents o il
water storage in lakes, wetlands and T Y maten |
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“Statistical” Floodplains outtow
[Decharme, 2008;
Coe, 2007]

We propose a new global river routing model, which incorporate physically-
based representation of floodplain inundation dynamics:
Catchment-based Macro-scale Floodplain model (CaMa-Flood)



2. Model Framework: CaMa-Flood

Catchment-based Macro-scale Floodplain model
> A distributed river routing model
> Input: LSM runoff, Boundary Condition: Water level at river mouth
Output: water storage (prognostic); discharge, water level, Inundated area (biagnosed)

> River and floodplain storage with sub-grid topographic parameters.




2. Model Framework: CaMa-Flood

Catchment-based Macro-scale Floodplain model

> A distributed river routing model

> Input: LSM runoff, Boundary Condition: Water level at river mouth

Output: water storage (prognostic); discharge, water level, Inundated area (biagnosed)
> River and floodplain storage, with sub-grid topographic parameters.
> Diffusive wave equation, roughness = Manning, along river network.

Realistic description of sub-grid topographic parameter is quite important!
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3. Sub-grid topographic parameters: FLOW

Flexible Location of Waterways method

SRTM30 Elevation [m] (Amazon River) » ;' =l

| &1km elevation :‘
SRTM30
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Fine-resolution (1 km) hydro-topographical datasets

GDBD Flow Direction Map & SRTM30 DEM

FLOW method [Yamazaki, 2009] is used to objectively
decide sub-grid topographic parameters from
those hydro-topographical datasets.

Yamazaki et al. (2009), Deriving a global river network map and its sub-grid topographic 7
characteristics from a fine-resolution flow direction map, HESS, 13, 2241-2251.
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3. Sub-grid topographic parameters: FLOW

Flexible Location of Waterways method
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3. Sub-grid topographic parameters: FLOW

Flexible Location of Waterways method

1) Decide “outlet pixel” from GBDB pixels in
each CaMa-Flood cell. >Channel altitude
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3. Sub-grid topographic parameters: FLOW

Flexible Location of Waterways method

1) Decide “outlet pixel” from GBDB pixels in 12 -
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3. Sub-grid topographic parameters: FLOW

Flexible Location of Waterways method

1) Decide “outlet pixel” from GBDB pixels in
each CaMa-Flood cell. >Channel altitude
2) Decide downstream cell by tracking
GDBD path from outlet pixel >River networle-
3) Calculate channel length considering
meandering in 1-km scale >Channel length 1 [._
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3. Sub-grid topographic parameters: FLOW

Flexible Location of Waterways method

1) Decide “outlet pixel” from GBDB pixels in
each CaMa-Flood cell. >Channel altitude
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GDBD path from outlet pixel >River networle- @\
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3. Sub-grid topographic parameters: FLOW

Flexible Location of Waterways method

1) Decide “outlet pixel” from GBDB pixels in EifiSk=s &
each CaMa-Flood cell. >Channel altitude '
2) Decide downstream cell by tracking ¢
GDBD path from outlet pixel >River network = s
3) Calculate channel length considering
meandering in 1-km scale >Channel length
4) Calculate group of GDBD pixels drained
to the river channel >Catchment Area

5) CDF of elevation within a catchment is
created. >Floodplain Inundation Profile

=> Water level and inundated area is
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3. Sub-grid topographic parameters: FLOW

Flexible Location of Waterways method
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4. Floodplain inundation simulation in the Amazon

Impact of introducing 1) floodplain reservoir and 2) diffusive wave
equation is discussed
> Experimental setting

Experiment Storage Flow Routing
NoFLD River Channle Only Kinematic Wave
FLD+Kine River Channel + Floodplain Kinematic Wave

FLD+Diff River Channel + Floodplain Diffusive Wave

> Special Resolution = 15 arc-min (25 km), Time step = 15 min

> LSM runoff [Kim, 2009]: Spatial = 1 deg, Time step = 1 day (Linear interpolation)
Climate Forcing (JRA25) + Precipitation (GPCP) = LSM (MATSIRO) = Runoff

> Boundary condition at river mouth: Constant sea elevation.
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4. Floodplain inundation simulation in the Amazon

Validation of daily river discharge:
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ey A e R
AMAZONAS 2 E I
[OBIDOS]* ‘“* 5 e aadifie
800000 i A -
— Obs (GRDC) — River & floodplain + Kinematic
— 500000 River only + Kinematic River & floodplain + Diffusive |
e (CaMa-Flood)
mE | i f
|
. 400000 | ||H| ” h i
8’0 \w | ' i ' ' Fluctuation is/suppressed
S 300000 - i when floodplain |s introduced [
S |
B2 \ | ,
O 200000’ / | \ | N ™ I
Z ' ; ) \
'C_U A Y ha 1 ]
O 100000 - VAN ' MR\ N\ PN
Fluctuation of river discharge is t00 Illgrge without floo&'bj,af'r'lm
D .

1993 1994 1995
16



4. Floodplain inundation simulation in the Amazon

Validation of daily river discharge:
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4. Floodplain inundation simulation in the Amazon

Flow velocity in May 1993: [Kinematic .vs. Diffusive]

River Flow Velocity (1993May, Diffusive) [m/s]
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4. Floodplain inundation simulation in the Amazon

Comparison of inundated area against satellite obs. [Prigent, 2007]

Flooded Fraction [%] (Sim, 199301) ) Flooded Fraction [%] {Obs, 199301)

- CaMa-Flood

Inundated Area FraCtio N == m———————————— - [%]

 [Prigent, 2007)Satellite
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General pattern of inundated area is reproduced.

19



4. Floodplain inundation simulation in the Amazon

Comparison of inundated area against satellite obs. [Prigent, 2007]

Flooded Fraction [%] (Sim, 199301) ) Flooded Fraction [%] {Obs, 199301)
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5. Hydrological simulation in Tonle-Sap, Cambodia

Can CaMa-Flood reproduce unique characteristics of Tonle-Sap?

> Experiment setting: River + Floodplain reservoir + Diffusive Wave Equation

> Spatial resolution = 5 arc-min (8 km); Time step : 5 min

> LSM runoff [Kim, 2009]: Spatial = 1 deg; Time step = 1 day (Linear Interpolation)
Climate Forcing (JRA25) + Precipitation (GPCP) = LSM (MATSIRO) = Runoff

> Boundary condition at mouth: Constant sea level

ADEOS-INGLI 250m R/\G/B=Ch,2823°20 km ADEOS-IGLI 250m R/G/B«Ch.2823'20 km
April 13, 2003 —— — October 10, 2003 PEE———

ADEOS-II Visible [JAXA, 2004] 21



5. Hydrological simulation in Tonle-Sap, Cambodia
Inundated area compared to MODIS+AMSR observation [Mori, 2009]

Flooded Area Fraction (200308, Obs) [%] Flooded Area Fraction (200308, Diff) [%]
134 r‘ 15H

1 (Dry) Satellite | Ca Ma-Fldod
; Inundated

[Mori, 2009] | .. * .
% 13 o ! . Area FraC.
12.5M : > [%

Seasonal lake area change is
reproduced.
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5. Hydrological simulation in Tonle-Sap, Cambodia

Discharge at Tonle-Sap River, which connects Tonle-Sap Lake and

Mekong River. o _ _
During its flooding phase, the Tonle Sap receives more

S22 A than 51,000 millionm? of water from the Mekong River
7 WS 7 | viathe Tonle Sap River. [Penny, 2006]
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6. Results in major rivers in the world.

(a)ORINOCO, [PUENTE_ANGOSTURA]

Area: 836000 [km®] Lon:-63.60 Lat:8.15
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River & floodplain + Diffusive (CaMa-Flood)

Simulated discharge by CaMa-Flood shows good agreement with
observation, except for boreal rivers in cold region.
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6. Results in major rivers in the world.

Validation of inundated area against satellite observation [Prigent, 2007]

Inundation in floodplains
along mainstream of major
rivers is reproduced.

While, inundated area is
generally underestimated in
the global-scale:

-1B0 -120 -0 (o] 60 120 180

> Inundation in small pools
due to local depression is not
considered.

> Irrigated paddy fields are
also not negligible.

Inundated area fraction at annual maximum (1993) 25
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/. Summary

* Physically-based description of inundated area dynamics
IS achieved in the global river routing model, CaMa-Flood.

— River networks and topographic parameters are automatically derived
from 1-km DEM and flow direction map.

— Relationship between water storage, water level, inundated area is
objectively described.

— Flow computation by diffusive wave equation is realized.

« Simulation by CaMa-Flood

— Dally river discharge is well reproduced. Consideration of floodplains
reduces overestimation of flood peak discharge.

— Diffusive wave equation is effective to simulate flow velocity variability
in a flat river basins like the Amazon.

— Inundation in floodplains along mainstreams of major rivers are
reproduced.

— Large-scale backflow in Tonle-Sap River is reproduced by realistic
representation of water surface elevation.
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Thank You!

Tonle-Sap Lake, Cambodia
3rd Oct 2009




