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Concepts of the CaMa-Flood development

CaMa-Flood is designed to achieve the following 3 requirement:

[1] A global-scale model of all rivers, wetlands and lakes on the Earth.
- Simulating floods in all river basins, including ungauged/data-sparse regions.
- Targeting coupling with global climate models or earth system models.
= CaMa-Flood includes global topography data for global simulations.
= Assumed input to CaMa-Flood is runoff from global land models.

[2] Very high computational efficiency.
- Simulation must be fast enough for use in real-time flood forecast.

- Computational cost must be light enough as a sub-model of a complex GCM/ESM.
= 1-D river routine with sub-grid flood scheme.

[3] Realistic surface water dynamics.
- Water moves from high place to low place. This is the basic of hydrodynamics.
- Simulation of water level & inundated area, in addition to river discharge.
= Hydrodynamic flow equation.

CaMa-Flood is the only hydrodynamic model which satisfies the 3 requirement.
However, the model became complex to achieve fast and realistic global simulations.
If any of above requirements is not needed, a simpler model may be suitable for your research.



CaMa-Flood (v3.6) development: Model Assumptions

[1] Global topography & hydrography data
- Ground elevation is given by SRTM3 DEM (+SRTM30 above 60N).
- River networks are given by HydroSHEDS flow direction map (+GDBD above 60N).

4 2 HydroSHEDS
N B e 7 Amazon Basin
SV River network derived

from SRTM elevation data

major
frivars and
streams are

visualized 2

10 24 30 a0 70 1w 1560 200 300 BOO 00 1G04

. River kne width
lonal
190 m elevation s B
[SRTM3] — 1
Kilometers

Elevation is adjusted to satisfy the condition that
downstream is always not higher than upstream
along the HydroSHEDS river networks. [Yamazaki et al., 2012] [HydroSHEDS] -
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CaMa-Flood (v3.6) development: Model Assumptions

[2] Unit-catchment & sub-grid topography
- River basins are divided to unit-catchments in order to reduce computational cost.
- *One unit-catchment is assigned to each lon-lat grid box for easy data handling.
- Water stage (level, area) is diagnosed from water storage using sub-grid topography.
- Uniform water level in a unit-catchment. River and floodplain water levels are same.
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Sub-grid topography is represented by 6 parameters.
[1] Catchment area, [2] channel length [3-4] channel width + depth,
[5] Floodplain elevation profile, [6] Bank-top elevation

These topography parameters (except channel width + depth) are
derived from the high-resolution DEM.

Floodplain profile is given by a non-parametric increasing function
of resampled floodplain heights above river channels.
- No levee, no depressions in floodplains



CaMa-Flood (v3.6) development: Model Assumptions

[3] River network map & discharge calculation.

- Water exchange between unit-catchments only occurs along the river network map.
- Only one downstream is assigned to each unit-catchment by the river network map.
- Discharge to downstream is calculated separately for channel and floodplain.
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Water storage in next time step is updated using mass-balance equation.

River and floodplain discharge



CaMa-Flood (v3.6) development: Model Assumptions

[4] Multi-downstream connectivity scheme
- Additional downstream directions can be added to the river network map
to represent bifurcation channels and 2-D floodplain flow. [Yamazaki et al., GRL 2014]
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Delineation of bifurcation pathways

High-resolution DEM is analyzed to find potential flow pathways which connect two unit-catchments
without upstream-downstream relationship on the original river network map.
Flow pathways are divided to channel bifurcation and overland connections using the SWBD water mask.
Discharge calculation for these sub-channels is same as main channels (i.e. local inertial equation).



CaMa-Flood (v3.6) development: Model Assumptions

[5] Channel cross-section parameters
- Channel depth + width are given by a power-low function of mean flow.
- Channel width can be given from a satellite water body map (optional).
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Channel depth estimated by power-low Global Width Database for Large Rivers

There is no global measurement of river channel depth, thus is estimated by a power-low equation.
Channel width is calculated based on the SWBD water map [Yamazaki et al., 2014].



CaMa-Flood (v3.6) development: Model Assumptions

[6] Diagnostic downscaling of flood depth
- Flood depth can be diagnostically downscaled to the high-resolution DEM
by post processing after the hydrodynamic simulation.
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“High-resolution DEM’s height above river channel” and “simulated water depth above river channe
are compared to calculate water depth of each high-resolution pixel.



CaMa-Flood (v3.6) development: Model Assumptions

[7] Other assumptions (or limitations)
- Evaporation from water surface and infiltration to soil are not considered.

- Lake/water fall schemes are not yet developed.
These are solved by same equations as rivers.

- No river bank/levee is represented.
This is partly due to depression is not assumed in floodplains.

- No human activities (e.g. dam regulation, irrigation, canals, weirs).
- Water “disappears” at river mouth. No water balance calculation at inland seas.
- Topography does not change in time. No sedimentation or geomorphology process.

- Runoff is given from external land models. No surface-ground waters interaction.
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Summary: CaMa-Flood model development

[1] Concepts: Fast but realistic global hydrodynamic simulation

- Global 2D hydrodynamic models (e.g. LISFLOOD-FP) is best for accurate simulations
because of explicit flow calculation on high-res pixels without sub-grid assumptions.

- But 2D hydrodynamic models are computationally heavy. We need faster simulations.

- CaMa-Flood overcomes this difficulty by adopting following assumptions:
<1> Sub-grid flood inundation scheme
<2> 1D river network + multi-downstream connectivity
<3> Diagnostic downscaling by post-processing simulated water level
- The dynamics of CaMa-Flood is now mostly similar to 2D hydrodynamic models.

[2] Limitations (both in CaMa-Flood and 2D hydrodynamic models)
- Global topography dataset (DEM, Hydrography) still has large errors.
- Channel bathymetry (width + depth) are not well represented.
- Large uncertainty in input runoff forcing.
- Only river & floodplain flow are solved. No lake, human activity, sediment, etc.



