next up previous
Next: About this document ... Up: Hydrological cycle representation with Previous: acknowledgments

Bibliography

Abbott, M. B., Bathurst, J. C., Cunge, J. A., O'connell, P. E., Rasmussen, J., 1986a. Introduction to the European Hydrological System - Systeme Hydrologique Europeen, SHE, 1: History and Philosophy of a Physically-Based, Distributed Modelling System . J. Hydrol. 87 (1/2), 45-59.

Abbott, M. B., Bathurst, J. C., Cunge, J. A., O'connell, P. E., Rasmussen, J., 1986b. An introduction to the European Hydrological System - Systeme Hydrologique Europeen, SHE, 2: structure of a physically-based, distributed modelling system. J. Hydrol. 87 (1/2), 61-77.

Ambroise, B., Beven, K., Freer, J., 1996a. Toward a generalization of the TOPMODEL concepts: Topographic indices of hydrological similarity. Water Resour. Res. 32 (7), 2135-2146.

Ambroise, B., Freer, J., Beven, K., 1996b. Application of a generalized TOPMODEL to the small Ringelbach catchment, Vosges, France. Water Resources Research 32 (7), 2147-2160.

Becker, A., Braun, P., 1999. Disaggregation, aggregation and spatial scaling in hydrological modelling. J. Hydrol. 217 (3), 239-252.

Becker, A., Nemec, J., 1987. Macroscale hydrologic models in support to climate research. In: The Influence of Climate Change and Climatic Variability on the Hydrologic Regime and Water Resources. No. 168 in IAHS Publication. International Association of Hydrological Sciences Press, Institute of Hydrology, Wallingford, Oxfordshire UK, pp. 431-445.

Beven, K. J., Kirkby, M. J., 1979. A Physically Based, Variable Contributing Area Model of Basin Hydrology. Hydrological Sciences Bulletin 24 (1), 43-69.

Bromley, J., Brouwer, J., Barker, A. P., Gaze, S. R., Valentin, C., 1997. The role of surface water redistribution in an area of patterned vegetation in a semi-arid environment, south-west Niger. J. Hydrol. 198 (1-4), 1-29.

Cammeraat, L. H., 2002. A review of two strongly contrasting geomorphological systems within the context of scale. Earth Surf. Proc. Land. 27 (11), 1201-1222.

Chen, L., Qu, Y., 1992. Water and land resources and their rational development and utilization in the Hexi Region. Science Press, Beijing China, (in Chinese).

Crawford, N. H., Linsley, R. K., 1966. Digital simulation in hydrology: Stanford Watershed Model IV. Stanford Univ., Palo Alto, Calif., Tech. Rep. No. 39.

Dettinger, M. D., Diaz, H. F., 2000. Global characteristics of stream flow seasonality and variability. J. Hydromet. 1 (4), 289-310.

Dooge, J. C. I., 1959. A General Theory of the Unit Hydrograph. J. Geophys. Res. 64 (2), 241-256.

Dunn, S. M., Ferrier, R. C., 1999. Natural flow in managed catchments: a case study of a modelling approach. Water Res. 33 (3), 621-630.

El-Hames, A. S., Richards, K. S., Jun. 1998. An integrated, physically based model for arid region flash flood prediction capable of simulating dynamic transmission loss. Hydrol. Process. 12 (8), 1219-1232.

Flerchinger, G. N., Cooley, K. R., 2000. A ten-year water balance of a mountainous semi-arid watershed. J. Hydrol. 237, 86-99.

Flerchinger, G. N., Cooley, K. R., Hanson, C. L., Seyfried, M. S., Feb. 1998. A uniform versus an aggregated water balance of a semi-arid watershed. Hydrol. Process. 12, 331-342.

Flügel, W. A., Cooley, K. R., 1995. Delineating hydrological response units by Geographical Information System analyses for regional hydrological modeling using PRMS/MMS in the drainage-basin of the river Brol, Germany. Hydrol. Process. 9, 423-436.

Freeze, R. A., Harlan, R. L., 1969. Blueprint for a physically-based, digitally-simulated hydrologic response model. J. Hydrol. 9, 237-258.

Green, W. H., Ampt, C. A., 1911. Studies on soil physics: 1. Flow of water and air through soils. J. Agric. Sci. 4, 1-24.

Güntner, A., Bronstert, A., 2004. Representation of landscape variability and lateral redistribution processes for large-scale hydrological modelling in semi-arid areas. J. Hydrol. 297, 136-161.

Hewlett, J. D., 1961aa. Soil moisture as a source of base flow from steep mountain watersheds. USDA Forest Service, Athens, Ga., Southeast Forest Experimental Station Paper No. 132.

Hewlett, J. D., 1961ab. Some ideas about storm runoff and base flow. USDA Forest Service, Athens, Ga., Southeast Forest Experiment Station Annual Rep.

Horton, R. E., 1919. Rainfall interception. Monthly Weather Rev. 147, 603-623.

Horton, R. E., 1933. The role of infiltration in the hydrologic cycle. Trans. Am. Geophys. Union 14, 446-460.

Horton, R. E., 1939. Analysis of runoff-plat experiments with varying infiltration capacity. Trans. Am. Geophys. Union 20, 693-711.

Hu, H. P., Tang, Q. H., Lei, Z. D., Yang, S. X., 2004. Runoff-evaporation hydrological model for arid plain oasis I: the model structure. Shuikexue Jinzhan/Advances in Water Scinece 15 (2), 140-145, (in Chinese).

Hursh, C. R., Brater, E. F., 1941. Separating hydrographs into surface- and subsurface-flow. Trans. Am. Geophys. Union 22, 863-871.

Keulegan, G. H., 1944. Spatially variable discharge over a sloping plane. Trans. Am. Geophys. Union 25, 959-965.

Lange, J., Liebundgut, C., Schick, A. P., 2000. The Importance of Single Events in Arid Zone Rainfall-Runoff Modelling. Phys. Chem. Earth PT. B. 25, 673-677.

Li, C., Yang, D., Ni, G., Hu, H., 2004. Simulation of irrigation water consumption in the Yellow River basin using a distributed hydrological model. In: Proceedings of the Second International Conference on Hydrology and Water Resources in Asia Pacific Region. APHW, Singapore.

Lighthill, M. G., Whitham, G. B., 1955. On Kinematic Waves. I. Flood Movement in Long Rivers. Proc. R. Soc. London. Ser. A. 229 (1178), 281-316.

Mao, X. M., Lei, Z. D., Shang, S. H., Yang, S. X., 1999. Method of equivalent phreatic evaporation by lowering evaporation surface for estimation of the phreatic evaporation from farmland based on that from bare soil. Guangai Paishui/Irrigation and Drainage 18 (2), 26-29, (in Chinese).

Mao, X. M., Yang, S. X., Lei, Z. D., 1997. Numerical simulation of ground water evaporation from base soil in Yerqiang River basin. Shuikexue Jinzhan/Advances in Water Scinece 8 (4), 313-320, (in Chinese).

Martin, M., Dickinson, R. E., Yang, Z. L., Dec. 1999. Use of a Coupled Land Surface General Circulation Model to Examine the Impacts of Doubled Stomatal Resistance on the Water Resources of the American Southwest. J. Climate 12, 3359-3375.

McDonald, M. G., Harbaugh, A. W., 1988. A modular three-dimensional finite-difference ground-water flow model. US Geological Survey, Reston, Virginia, Techniques of Water-Resources Investigations, Book 6, Chap. A1.

Mo, X. G., Liu, S. X., Lin, Z. H., Zhao, W. M., 2004. Simulating temporal and spatial variation of evapotranspiration over the Lushi basin. J. Hydrol. 285, 125-142.

Murphy, A. H., 1988. Skill scores based on the mean square error and their relationships to the correlation coefficient. Mon. Weather Rev. 16, 2417-2424.

Nash, J. E., 1957. The form of the instantaneous unit hydrograph. Hydrol. Sci. Bull. 3, 114-121.

Penman, H. L., 1948. Natural evaporation from open water, bare soil and grass. Proc. R. Soc. London, Ser. A. 193, 120-145.

Penman, H. L., 1961. Weather, plant and soil factors in hydrology. Weather 16, 207-219.

Peugeot, C., Cappelaere, B., Vieux, B. E., Seguis, L., Maia, A., Aug. 2003. Hydrologic process simulation of a semiarid, endoreic catchment in Sahelian West Niger. 1. Model-aided data analysis and screening. J. Hydrol. 279, 224-243.

Peugeot, C., Esteves, M., Galle, S., Rajot, J. L., Vandervaere, J. P., 1997. Runoff generation processes: Results and analysis of field data collected at the east central supersite of the HAPEX-Sahel experiment. J. Hydrol. 189, 179-202.

Postel, S. L., Daily, G. C., Ehrlich, P. R., Feb. 1996. Human Appropriation of Renewable Fresh Water. Science 271 (5250), 785-788.

Ren, L. L., Wang, M. R., Li, C. H., Zhang, W., 2002. Impacts of human activity on river runoff in the northern area of China. J. Hydrol. 261, 204-217.

Richardson, B., 1931. Evaporation as a function of insolation. Trans. Am. Soc. Civ. Eng. 95, 996-1011.

Robinson, J. S., Sivapalan, M., Snell, J. D., 1995. On the relative roles of hillslope processes, channel routing, and network geomorphology in the hydrologic response of natural catchments. Water Resour. Res. 31, 3089-3101.

Scherrer, S., Naef, F., Feb. 2003. A decision scheme to indicate dominant hydrological flow processes on temperate grassland. Hydrol. Process. 17, 391-401.

Singh, V. P., Woolhiser, D. A., 2002. Mathematical modeling of watershed hydrology. J. Hydrol. Eng. 7 (4), 270-292.

Sittner, W. T., Scauss, C. E., Munro, J. C., 1969. Continuous hydrograph synthesis with an API-type hydrologic model. Water Resour. Res. 5 (5), 1007-1022.

Strasser, U., Mauser, W., 2001. Modelling the spatial and temporal variations of the water balance for the Weser catchment 1965-1994. J. Hydrol. 254, 199-214.

Sugawara, M., 1967. The flood forecasting by a series storage type model. In: Floods and their Computation. International Association Of Scientific Hydrology, pp. 555-560, Publication No. 84.

Tang, Q. H., 2003. A study of dissipative hydrological model for arid plain oasis. Tsinghua University, Beijing, China, Master thesis (in Chinese).

Tang, Q. H., Tian, F. Q., Hu, H. P., 2004. Runoff-evaporation hydrological model for arid plain oasis II: the model application. Shuikexue Jinzhan/Advances in Water Scinece 15 (2), 146-150, (in Chinese).

Uhlenbrook, S., Roser, S., Tilch, N., 2004. Hydrological process representation at the meso-scale: the potential of a distributed, conceptual catchment model. J. Hydrol. 291, 278-296.

Vitousek, P. M., Mooney, H. A., Lubchenco, J., Melillo, J. M., 1997. Human domination of earth's ecosystems. Science 277 (5325), 494-499.

Wang, J., 1982. The basic characteristics of rainstorms in arid area of China, 2nd Edition. Institute of Hydrology, Nanjing China, (in Chinese).

Yang, D., Herath, S., Musiake, K., 1998. Development of a geomorphology-based hydrological model for large catchments. Ann. J. Hydraul. Eng. 42, 169-174.

Yang, D., Musiake, K., 2003. A continental scale hydrological model using the distributed approach and its application to Asia. Hydrol. Process. 17, 2855-2869.

Zhao, C., Hu, S., Liu, G., 2000. Sectioned curve fitting on empirical formula for estimating phreatic evaporation. Shuitu Baochi Xuebao/Journal of Soil and Water Conservation 8 (4), 122-126, (in Chinese).

Zhao, R. J., 1992. The Xinanjiang model applied in China. J. Hydrol. 135, 371-381.

Zhao, R. J., Zhuang, Y. L., Fang, L. R., Liu, X. R., Zhang, Q. S., 1980. The Xinanjiang model. In: Hydrological Forecasting. International Association Of Scientific Hydrology, pp. 351-356, Publication No. 129.

Figure 1: Typical geomorphologic characteristics and hydrological zones.
60#60


61#61

Figure 3: Schematically representation of runoff-evaporation processes grouped into lateral and vertical processes.
62#62

Figure 4: Schematic representation of the natural dispersive processes (dark shaded area) and manmade dispersive processes (shaded area with solidus) over a studied area.
63#63

Figure 5: Schematic representation of the RE model.
64#64

Figure 6: Reproduced (dotted) and observed (solid) streamflow to downstream (a) and water table depth in irrigation area for two sub-areas (b1 and b2).
65#65

Figure 7: River water (a) and canal water (b) dispersion and consumption.
66#66

Figure 8: Water consumption in non-irrigation area.
67#67


Table 1: Water budget in the Akesu oasis (108m3/year).
Year Recharge Dis. Consumption Stor. change
  Cd Cg P D Ei Ewild Ewaste Ewet Ec 68#68S 68#68G
1999 33.5 1.8 3.4 10.9 13.8 3.7 2.4 4.8 3.9 0.0 -0.7
2000 35.7 0.8 3.8 10.2 15.7 4.2 1.9 4.3 4.1 -0.3 0.0
2001 33.0 1.2 3.8 8.7 15.9 4.3 1.7 4.3 3.8 -0.5 -0.4
2002 34.3 3.2 3.8 10.5 15.0 4.4 2.0 4.4 4.0 0.8 0.2
Avg. 34.1 1.8 3.7 10.1 15.1 4.2 2.0 4.4 4.0 0.0 -0.2
Cd: Water diverted into the oasis; Cg: River water seepage to the oasis; P: Precipitation; D: Return water and drainage; Ei: Evaporation from irrigation area; Ewild: Evaporation from wild land; Ewaste: Evaporation from waste land; Ewet: Evaporation from wetland; Ec: Evaporation from canal surface and surrounding saturated zone; 68#68S: Soil water storage change; 68#68G: Groundwater storage change.


next up previous
Next: About this document ... Up: Hydrological cycle representation with Previous: acknowledgments
TANG 2006-02-16