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[1] Bias-correction methods applied to monthly temperature and precipitation data
simulated by multiple General Circulation Models (GCMs) are evaluated in this study.
Although various methods have been proposed recently, an intercomparison among them
using multiple GCM simulations has seldom been reported. Moreover, no previous
methods have addressed the issue how to adequately deal with the changes of the statistics
of bias-corrected variables from the historical to future simulations. In this study, a new
method which conserves the changes of mean and standard deviation of the uncorrected
model simulation data is proposed, and then five previous bias-correction methods as
well as the proposed new method are intercompared by applying them to monthly
temperature and precipitation data simulated from 12 GCMs in the Coupled Model
Intercomparison Project (CMIP3) archives. Parameters of each method are calibrated by
using 1948–1972 observed data and validated in the 1974–1998 period. These methods are
then applied to the GCM future simulations (2073–2097) and the bias-corrected data are
intercompared. For the historical simulations, negligible difference can be found between
observed and bias-corrected data. However, the differences in future simulations are
large dependent on the characteristics of each method. The new method successfully
conserves the changes in the mean, standard deviation and the coefficient of variation
before and after bias-correction. The differences of bias-corrected data among methods
are discussed according to their respective characteristics. Importantly, this study
classifies available correction methods into two distinct categories, and articulates
important features for each of them.
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1. Introduction

[2] The procedures for correcting biases in the General
Circulation Model (GCM) simulations (“bias-correction”)
are important. The impacts of changing climate on the
Earth’s environment are of increasing interest, and GCMs
have enabled the projections of future climate change
caused by natural variability or anthropogenic activities

[Intergovernmental Panel on Climate Change (IPCC),
2007]. Despite continuous efforts to improve GCM’s capa-
bility of simulating historical climates, the use of bias-
correction methods is essential for the impact assessment
studies of climate change. This importance was described in
the special report of the IPCC [Seneviratne et al., 2012].
[3] In assessing potential hydrologic impacts of climate

change [e.g., Arnell, 2004; Oki and Kanae, 2006], a suitable
correction of biases in climate model projected temperature
(Ta) and precipitation (Pr) is the principal focus due to its
significant influence on the hydrologic response. For exam-
ple, Lehner et al. [2006] assessed the impacts of global cli-
mate change on the risk of flood and drought by applying a
hydrologic model forced with the bias-corrected atmospheric
data. Dettinger et al. [2004] investigated the impacts of cli-
mate change on river flow in the Sierra Nevada of California
by using bias-corrected Ta and Pr data from GCM simula-
tions. Bias-correction methods were also applied to Ta and/or
Pr data of River Thames [Diaz-Nieto and Wilby, 2005],
Mekong River basin [Kiem et al., 2008], and Tone River
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basin in Japan [Takara et al., 2009]. In addition, bias-
correction has also been applied to the Regional Climate
Model (RCM) simulations such as the studies conducted
in four basins of the United States [Hay et al., 2002],
Ireland [Steele-Dunne et al., 2008], and the Mediterranean
[Quintana Seguí et al., 2010].
[4] In this study, multiple bias-correction methods found

in literature are applied to climate model simulated monthly
Ta and Pr data in global terrestrial areas, excluding Ant-
arctica and Greenland. The historical data are divided into
two periods: the first half (1948–1972) for baseline calibra-
tion and the second half (1974–1998) for validation. Two
main aspects of bias-correction are focused in the evaluation:
(1) The accuracy of bias-corrected data as judged by com-
parisons with observations. (2) The differences in the 21st-
century future simulations (2073–2097) among the bias-
corrected data from using different methods, as well as of
the changes of the statistics between uncorrected and bias-
corrected data. For the latter purpose, we compare the
changes in the mean Ta and Pr, the standard deviation
(SD) of Ta, and the coefficient of variation (CV) of Pr
from the baseline (1948–1972) to the projection (2073–
2097) period (hereafter denoted as Dmta, Dmpr, DSD and
DCV, respectively). The variability of Pr is quantified by
CV instead of SD since it is in general proportional to the
mean of Pr, and this is consistent with that used by
Leander and Buishand [2007].
[5] One of the distinctions among various bias-correction

methods is related to the difference between simulated and
observed data in the baseline period. The simplest method
[e.g., Graham et al., 2007; Sperna Weiland et al., 2010]
focuses on the mean difference between them. Since the
correction in only the mean value is often insufficient to
assess the impacts of climate change on potential hydro-
logic responses, some methods [e.g., Wood et al., 2004;
Leander et al., 2008; Piani et al., 2010] considering the
difference in the statistical distribution in addition to mean
have been proposed. However, these methods do not
consider the changes in statistics between the historical
and future simulations.
[6] Another important distinction among bias-correction

methods is related to the difference in the changes of Ta and
Pr between the historical and future simulations. Haerter
et al. [2011] emphasized the significance of this difference
and proposed an option to match the difference inDmta. They
mentioned thatDmta is not identical between uncorrected and
bias-corrected data if the SD of the simulated and observed
data in the baseline period is different.
[7] Although not yet proposed in literature, it can be

assumed that the change of simulated data from the baseline
to projection period is true. For the multitude of bias-
correction methods that have been proposed over last two
decades [e.g., Wood et al., 2004; Leander et al., 2008;
Piani et al., 2010], the Dmta, Dmpr, DSD and DCV are
not identical between uncorrected and bias-corrected data
because most of them assumed that the difference between
simulated and observed data in the baseline period will not
change in the future. However, the assumption that the
changes in these statistical quantities are conserved between
uncorrected and corrected data is not unreasonable, because
most impact assessment studies [IPCC, 2007] were generally
conducted under this critical assumption. Since in practice it

is impossible to know the actual changes (of Ta and Pr) from
the historical to projection period, to assume that these
changes obtained from model simulations are true can be
considered as a reasonable approach.
[8] One of the two main goals of this study is to eval-

uate existing bias-correction methods by using the data
from multi-GCM simulations. Although some studies [e.g.,
Christensen et al., 2008; Terink et al., 2010; Haerter et al.,
2011; Iizumi et al., 2011] have attempted to evaluate sev-
eral correction methods, a systematic and thorough analysis
on the differences among available methods have not been
reported. In addition, although it has been a common practice
to use multiple GCM data in climate change impact studies,
the same recommendation has seldom been adapted in the
evaluation of available bias-correction methods.
[9] The second goal of this study is to propose a new bias-

correction method that enables the time changes of basic
statistics (Dmta,Dmpr,DSD andDCV) to be nearly identical
between uncorrected and bias-corrected data. Although
several studies [e.g., Li et al., 2010; Haerter et al., 2011]
have attempted to keep a subset of these time differences
unchanged between uncorrected and corrected, none of them
can conserve most of the changes in the statistics.
[10] This paper is organized into six sections. The global

monthly Ta and Pr data sets used in this study are intro-
duced in Section 2. Several bias-correction methods that
will be intercompared in this study are briefly summarized
in Section 3. The results of intercomparisons are presented
in Sections 4, and the differences in the 95th percentile
extreme values of the bias-corrected data among various
bias-correction methods are presented and discussed in
section 5. This is followed by a summary of the perfor-
mance of each method, and the recommendations for future
investigations in Section 6.

2. Data and Methods

[11] The data used in this study include the simulations
from 12 GCMs in the Coupled Model Intercomparison
Project (CMIP3) [Meehl et al., 2007] archives of the Pro-
gram for Climate Model Diagnosis and Intercomparison
(PCMDI), as listed in Table 1. Although in general multiple
ensemble members are available, only one ensemble mem-
ber from each GCM is selected for this study. The variables
to be corrected include monthly mean Ta and Pr from the
20C3M and the SRES A1B experiments.
[12] Global climate forcing data from 1948 to 2006 with

the 0.5� grid resolution compiled by Hirabayashi et al.
[2008] are taken as the observational data from which the
bias-correction methods are calibrated and validated. An
advantage of this global data set is that the statistical char-
acteristics of climate variables are independent from the
reanalysis data since this global forcing data were created by
applying statistical methods to spatially and temporally
interpolate monthly to 3-hourly observational data, includ-
ing e.g., the PREC/L Pr data [Chen et al., 2002], CRU TS
2.1 [Mitchell and Jones, 2005], Global Historical Climatol-
ogy Network version 2 and the Climate Anomaly Monitor-
ing System GHCN/CAMS [Fan and van den Dool, 2008],
etc. Using this data set, Hirabayashi et al. [2010] was able to
simulate reasonable global-scale glacier mass balance by
using their glacier model.
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[13] The following three time periods are defined in this
study. The GCM-simulated monthly Ta and Pr data are
calibrated against the corresponding observed data from
1948 to1972 (baseline period) and then validated from 1974
to1998 (validation period). Also, GCM simulations of the
SRES A1B experiment are corrected using observed data
during the baseline period. Since in some methods the length
of data period during which the bias-correction is conducted
must match that of the baseline period (25 years), the future
simulation data of the SRES A1B experiment from 2073 to
2097 (projection period) are used for the intercomparison
and evaluation of bias-correction methods.

3. Bias-Correction Methods

[14] In this section, five bias-correction methods found in
literature briefly reviewed in Section 3.1 will be classified
according to their respected characteristics with the two
criteria (Section 3.2). Then, a new bias-correction method
will be proposed in Section 3.3.

3.1. Previous Methods

[15] The simplest way for bias-correction is by adding (or
multiplying) the Dmta to the observed data in the baseline
period (i.e., the “delta method” [e.g., Graham et al., 2007;
Sperna Weiland et al., 2010]):

xcor;i ¼ xo;i þ mp � mb ð1Þ

xcor;i ¼ xo;i �
mp

mb
ð2Þ

where xcor,i, xo,i (i = 1, 2, ⋯, 25) denotes the bias-corrected
data and observed data in the baseline period, respectively.
The subscript b, p and o indicate the simulated data in the
baseline period and projection period, and observed data,
respectively. Previous studies often used equation (1) for Ta
and equation (2) for Pr, since negative values may result
from equation (1). Because only the average change (or
ratio) is added to (or multiplied with) the observed data,
the SD (CV) of the statistical distribution of bias-corrected
data is identical to that of observed data if equation (1)

(equation (2)) is adopted. In other words, the difference in
SD (CV) between two time periods does not affect the result
of bias-correction in equation (1) (equation (2)).
[16] For Pr, a slightly more advanced nonlinear bias-

correction method was proposed by Leander and Buishand
[2007], and subsequently adopted in several studies
[Leander et al., 2008; van Pelt et al., 2009; Hurkmans et al.,
2010; Terink et al., 2010]. Since the delta method corrects
only the mean of Pr, the following method [Leander et al.,
2008] that corrects both mean and CV is considered more
preferable:

xcor;i ¼ b xp;i
� �a ð3Þ

where xp,i is the simulated data in the projection period, and a
and b are the parameters obtained from calibration in the
baseline period and subsequently applied to the projection
period. They are determined by matching the mean and CV
of simulated data with that of observed data [Leander et al.,
2008].
[17] Another approach to correct both mean and SD (or

CV) is to apply the quantile-based mapping [Panofsky and
Brier, 1968] as applied in several recent studies [e.g.,
Wood et al., 2004; Ines and Hansen, 2006; Lopez et al.,
2009; Maurer 2007; Maurer et al., 2009]. For using this
method, the statistical distribution of the data must be
specified. Normal distribution is often assumed for Ta [e.g.,
Terink et al., 2010; Piani et al., 2010; Haerter et al., 2011],
while the two-parameter gamma distribution is often
assumed for Pr [e.g., Ines and Hansen, 2006; Piani et al.,
2009] as follows:

f xð Þ ¼ xk�1
exp � x

q

� �
G kð Þqk ð4Þ

where k and q are parameters taken as positive numbers.
However, this approach may leave rooms for improvement.
In particular, the goodness of fit is found to be not adequate
[Piani et al., 2010], and the parameter estimation errors are
large for daily (or sub-daily) Pr in some regions. Thus, some
other studies [e.g., Kiem et al., 2008; Piani et al., 2010] have
proposed to use the nonparametric techniques to estimate the
cumulative probability, which is able to produce a perfect
transformation function between uncorrected and observed
data in the baseline period.
[18] However, Piani et al. [2010] mentioned that the

nonparametric method may also have problems in the
functional robustness, because its overlarge degree of free-
dom is equal to the number of parameters. A more robust
method was thus proposed by Piani et al. [2010] in which
the exact equations that will be used for bias-correction are
first obtained from the data in the baseline period. This is
achieved by first sorting the data by its intensity, plotting
them against observed data, and then fitting by the following
equations instead of performing the quantile-based mapping:

xcor;i ¼ aþ bxp;i ð5Þ

xcor;i ¼ aþ bxp;i
� �

1� exp �
xp;i þ a

b

� �
c

8<
:

9=
;

0
@

1
A ð6Þ

Table 1. List of 12 GCMs Used in This Study

CMIP3_ID Originating Group

M1 BCCR-BCM2.0 Bjerknes Centre for Climate Research
M2 CGCM3.1(T63) Canadian Centre for Climate Modeling

& Analysis
M3 CCSM3 National Center for Atmospheric

Research
M4 CNRM-CM3 Météo-France/Centre National de

Recherches Météorologiques
M5 CSIRO-Mk3.5 CSIRO Atmospheric Research
M6 GFDL-CM2.1 U.S. Dept. of Commerce/NOAA/

Geophysical Fluid Dynamics
Laboratory

M7 FGOALS-g1.0 LASG/Institute of Atmospheric Physics
M8 MIROC3.2(hires) CCSR/NIES/FRCGC
M9 ECHAM5/MPI-OM Max Planck Institute for Meteorology
M10 MRI-CGCM2.3.2 Meteorological Research Institute
M11 UKMO-HadGEM1 Hadley Centre for Climate Prediction

and Research/Met Office
M12 INGV-SXG Instituto Nazionale di Geofisica

e Vulcanologia
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where a, b, and c are parameters to be obtained during
baseline period. Equation (5) is used if a < 0 and 1/5 < b < 5,
otherwise equation (6) is used [Piani et al. 2010].
[19] Another method taking into account the changes of

the data statistics from the baseline to projection period was
proposed by Li et al. [2010]. Consideration of the change of
the data between two periods characterizes the difference
from other available methods. This method applies the
quantile-based mapping for both the data between the
baseline and projection period, and between uncorrected and
observed data, as in the following:

xcor;i ¼ xp:i � F�1
b Fp xp;i

� �� �� F�1
o Fp xp;i

� �� �� �
: ð7Þ

[20] However, a month when Pr = 0 poses a significant
problem for this method. Li et al. [2010] used a mixed
gamma distribution to overcome this problem. The CDF in
equation (7) is estimated by

F xð Þ ¼ 1� pð ÞH xð Þ þ pG xð Þ ð8Þ

where p is the percentage of the months with rain; H(x) is a
step function of the value 0 when there is Pr = 0 and 1 when
Pr ≠ 0; G(x) is the gamma distribution estimated from the
uncorrected data of which the amount is greater than zero.

3.2. Classification of Bias-Correction Methods

[21] The above bias-correction methods can be classified
into four types based on the following two major criteria:
(1) Whether the statistics (mean, SD and CV) of future
simulations are used; and (2) whether the estimation of the
cumulative probability of correcting variables is necessary.

The results of applying methods that require the use of future
statistics depend on the data in the projection period, while
those which do not use are not. Thus, we define the methods
that do not use future statistics as the “CONSTANT” type
(henceforth as “C-type”), and methods that use future statis-
tics as the “VARIABLE” type (“V-type”). Since the delta
method (equations (1) and (2)) require the mean of the vari-
ables in the projection period and the method of Li et al.
[2010] requires the estimation of CDF in the projection
period (equation (7)), both of them fall into the V-type cate-
gory, while the other methods as reviewed above belong to
the C-type. In addition, the methods which require the esti-
mation of the cumulative probability function are described
as the “PROBABILITY” type (“p-type”), while those not as
the “NON-PROBABILITY” type (“n-type”).
[22] Table 2 summarizes the characteristics of the pro-

posed classification. One of the main differences between
the V-type and C-type methods is related to the differences
between uncorrected and corrected data in the change of Ta
and Pr from the baseline to projection period (Dmta and
Dmpr, respectively). The Dmta and Dmpr of uncorrected and
corrected data are in general not the same when the C-type
methods are used. On the other hand, Dmta and Dmpr of the
corrected data by using the V-type methods can be easily
matched with that of uncorrected data because the statistics
of future simulations are used in the bias-correction.
[23] Another difference is related to the data length in the

projection period. When the V-type methods are used, the
length of the data to be bias-corrected needs to be the same
as that in the baseline period because the statistics of future
simulation data are used. In contrast, the length of bias-
corrected data can be arbitrary when the C-type methods are

Table 2. Summary of the Classification of Bias-Correction Methods

Type

Classification by Whether Future Statistics are Included in the Equations for Bias-Correction

Constant Type (C Type) Variable Type (V Type)

Definition Statistics (mean, SD, or CV) in future period are NOT
included in the equations of bias-correction

Statistics in the future period is included in the
equations of bias-correction

Characteristics * Statistics (Mean, SD, or CV) in future period does
NOT affect the result of bias-correction.

* Statistics in future period affects the result of
bias-correction.

* Any length of bias-corrected data can be obtained. * Easy to adjust the change of statistics from
baseline to future period between uncorrected
and corrected data.

* The length of the bias-corrected data needs
to be the same as that in baseline period

Example of previous studies Wood et al. [2004]; Leander and Buishand [2007];
Piani et al. [2010]; Kiem et al. [2008];
Ines and Hansen, [2006]

Diaz-Nieto and Wilby [2005];
Lehner et al. [2006]; Li et al. [2010]

Type

Classification by Assumptions of Statistical Distributions

Parametric Type (P Type) Nonparametric Type (n Type)

Definition Parametric distributions are assumed in the simulated
and/or observed data

Parametric distributions are not used in the
bias-correction

Characteristics * Unrealistic value cab be produced if the distribution
is not well estimated.

* Extrapolation is needed for the values which
is more/less than that in the baseline period.

* Statistically robust * Since the degree of freedom is equal to the
number of parameters, there is a problem
in the functional robustness if non-parametric
distribution is assumed

Example of previous studies Li et al. [2010]; Ines and Hansen [2006];
Piani et al. [2009]

Diaz-Nieto and Wilby [2005]; Leander and
Buishand [2007]; Piani et al. [2010];
Kiem et al. [2008]
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applied, since it corrects the data using only the data in the
baseline period. That is, when using the C-type methods the
length of bias-corrected data is allowed to exceed that in
the baseline period, and the mathematic functions between
uncorrected data and observed data can be uniquely deter-
mined by only using the data in the baseline period.
[24] Depending on the proposed two criteria, the above

methods can be classified into the following four types: the
Vp, Vn, Cp, and Cn methods. The classification proposed in
this study is useful to distinguish various methods. However,
both the methods of Leander and Buishand [2007] and Piani
et al. [2010] are categorized as Cn, but the characteristics of
these two methods are largely different, thus they are dif-
ferentiated by using the sub-classification such as Cn-l and
Cn-p, respectively.

3.3. A New Bias-Correction Method

[25] Although Dmta and Dmpr are conserved in the V-type
methods, DSD and DCV are not. Here, for the reasons
stated earlier, a new method is proposed of which both Dmta
and DSD for temperature (and Dmpr and DCV for precipi-
tation) are conserved. In most of previous methods, bias-
correction was applied to monthly Ta or Pr data. In contrast,
the proposed method first corrects the statistical parameters
for each of the baseline and projection period), and then
monthly Ta or Pr are corrected by using the quantile-based
mapping methods (section 3.1) with the bias-corrected sta-
tistical parameters, which are mean and SD (or CV) if a
normal distribution is assumed (usually for Ta). The proce-
dures for correcting the statistical parameter is as follows,

mcor ¼ mo þ mp � mb ð9Þ

scor ¼ sp so

sb
: ð10Þ

[26] After the statistical parameters are corrected, monthly
Ta is corrected as follows:

xcor;i ¼ F�1 F xp;i;m:p;sp

� �
;mcor;scor

� �
ð11Þ

where F is the CDF of the assumed statistical distribution.
[27] For Pr, the process is similar to Ta, but an extra

process is needed because of the zeroes in Pr. Here we apply
the two gamma-distributions defined only for positive vari-
ables. Since the months when Pr = 0 have to be excluded
before the estimation of statistical parameters, a threshold is
introduced to treat the portion of uncorrected data less than it
as zero. This threshold is obtained from the data in the
baseline period by calculating the percentile of uncorrected
data at which the corresponding observed Pr exceeds zero.
The threshold is zero if the number of the Pr = 0 months in
uncorrected data exceeds that in observed data.
[28] After the exclusion of Pr = 0 months, the mean and

CV are corrected as follows:

mcor ¼
mp mo

mb
ð12Þ

CVcor ¼ CVpCVo

CVb
: ð13Þ

[29] Then, two statistical parameters k and q are estimated
from the bias-corrected mean and CV by using the method
of moments. A multiplication equation is used to avoid the
occurrence of negative values because the variable of inter-
est, Pr, is nonnegative. After the parameters of the statistical
distribution of bias-corrected data are obtained, Pr is esti-
mated from the obtained distribution as follows:

xcor;i ¼ F�1 F xp;i; kp; qp
� �

; kcor; qcor
� � ð14Þ

where F is the CDF of the two-parameter gamma
distribution.

4. Comparison of Bias-Correction Methods

4.1. Metrics of Comparison

[30] The mean, 5th percentile, and 95th percentile of bias-
corrected monthly Pr and Ta data obtained by using each
method were compared to that of observed data. This eval-
uation is conducted for the baseline and validation periods
separately, based on the following spatially weighted root-
mean square-error (S-RMSE):

S-RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

A

X
j

aj
sobs; j

xcor; j* � xobs;v; j*
� �2

s
ð15Þ

where xcor,j* is the mean, 5th percentile, or 95th percentile at
a grid j; with the area aj; A is the sum of ai; xobs,v,j* is
the observed data in the validation period; and sobs; j is the
standard deviation of observed data at grid i in the baseline
period. The S-RMSE measures the difference between bias-
corrected data and observed data in the validation period.
The weighted difference at grid j is averaged over the grids
in the entire target domain (covering all terrestrial areas
except Antarctica and Greenland). A bias-correction method
is considered to be superior to another if S-RMSE is smaller.
However, grids with Pr less than 50 mm/mo. are excluded in
the calculation of S-RMSE in order to give priority to
compare the areas with higher Pr, because the areas with low
Pr usually have little influences on the calculated S-RMSE.
[31] In addition to the above tasks, Dmta, Dmpr, DSD and

DCV between uncorrected and corrected data are compared
for each method by the following procedures: (1) The mean
and SD (or CV) of both uncorrected and corrected data are
estimated for each grid and in each period; (2) the Dmta,
Dmpr, DSD and DCV were calculated; and (3) the above
statistics are averaged over the target region. For Pr, the
grids with Pr less than 50 mm/mo. are excluded in the
averaging due to the same reason described above.

4.2. Bias-Correction for Data in the 20th Century
Simulations

[32] Table 3 presents the comparison of the bias-corrected,
20th-century simulation data using different methods. The
values of S-RMSE in the table are averaged over 12 GCMs.
As seen, the mean difference in S-RMSE among different
methods is small relative to that between uncorrected and
bias-corrected data, and the same tendency is also found for
all the statistical indicators considered (i.e., mean, 5th per-
centile and 95th percentile) and for both Ta and Pr. The
statistical indicators in Table 3 are originally calculated for
all twelve months; since no significant differences among
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the months are found, the comparison is presented only for
January and July, from which the following findings can be
summarized.
[33] For Ta, (1) S-RMSE of the Vn method for both the

5th and 95th percentiles are smaller than those of other
correction methods; (2) S-RMSE of the Cp method for
the mean is smaller than other methods; (3) S-RMSE
of the proposed new method is slightly smaller than the
Vp method, although they are nearly identical. For Pr,
(1) S-RMSE of the Vn method for the 95th percentile is
generally smaller than those of other methods; (2) S-RMSEs
of the Cp and Cn-l methods for the 95th-percentile are
higher than other methods; (3) S-RMSE of the Vp method is
intermediate; (4) S-RMSE of the Cn-p method for the 5th-
percentile is higher than other methods; (5) S-RMSE of the
proposed method for the mean is slightly lower than other
methods.
[34] The standard deviation (SD) of the S-RMSE among

uncorrected data is also calculated in Table 3, which indi-
cates the spread of bias-corrected data among different
methods. Although the SD of S-RMSE is �10% for both
uncorrected Ta and Pr, it is reduced to �0.1% for Ta and
�1% for Pr after bias-correction. That is, the differences are
also small among the bias-corrected data from different

methods. Also, no significant differences in S-RMSE can be
found from the comparisons among individual months.
[35] Characteristics of the bias-correction methods are not

apparent when the change between two time periods is not
large. The Vn method, of which the SD (for Ta) and CV (for
Pr) of the corrected data are identical to that of observed data
(because it only adjusts the mean), shows a relatively small
S-RMSE because the changes of SD (or CV) between the
baseline and validation period are not large. The difference
of bias-correction is expected to become more significant in
the future projection period because the changes of Ta and
Pr from the baseline to future period are generally larger.
Although the comparison in this section only focus on the
relative change of Ta and Pr, the efficiency of each method
and the lack of large differences among methods are indi-
cated by this comparison.

4.3. Bias-Correction for the Data in 21st Century
Simulations

[36] The differences in the statistical indicators (Dmta,
Dmpr, DSD, and DCV) between corrected and uncorrected
data are compared among all the bias-correction methods
used, and the results are presented in Figures 1 (for tem-
perature) and 2 (for precipitation), respectively. These two
figures show the absolute difference (Dmta) or the ratio of
difference (Dmpr, DSD, and DCV) between corrected and
uncorrected data, with the latter defined as the absolute dif-
ference divided by the uncorrected mean or SD (or CV) in
the projection period, respectively. These statistical indica-
tors are calculated at each grid for each of the 12 GCMs, and
then averaged over the entire target regions. The error bars in
the figure represent the SD of the statistical indicators over
all the grids, and the averages over 12 GCMs are also shown
in the first column of the figures. Only the data in January
and July are presented here, since no marked differences in
tendency can be found among twelve months.
[37] Results show that for both Ta and Pr the character-

istics of the differences are not identical among different
methods. From Figure 1 (temperature), it can be seen that
(1) for the Vn and Vp methods, Dmta is zero, but DSD is
about 10–30%; (2) for the Cp method,Dmta is more than 1 K,
but DSD is almost zero; (3) for the proposed new method,
both Dmta and DSD are almost zero. From Figure 2 (pre-
cipitation), it can be seen that (1) for the Vn method, both
Dmpr andDCV are higher than other method; (2) for theCn-p
method, Dmpr is less than 10% and DCV is about 10–20%:
the former of which is smaller than Cn-l method, but the
latter is generally larger than Cn-l method; (3) for the
Cn-l method, the result is similar to that of the Cn-p method,
but the result of DCV over target region is opposite to the
result of the Cn-p method; (4) for the Vp method, Dmpr is
nearly 0, but DCV is higher than other methods except for
the Vn method; (5) for the Cp method, Dmpr is higher than
other methods except for the Cn-l method, but DCV is
smaller than any other methods. However, the spread (SD)
over the target regions is comparatively high; (6) for the
proposed method, both Dmpr and DCV are lower than all
other methods, and the spread over the target region is also
small. The identified characteristics as summarized above
are the same in other months than January and July, hence
their plots are not shown here. In summary, the statistical
characteristics of bias-corrected data in the projection period

Table 3. Comparisons of the Statistics of Bias-Corrected Data
Derived by Using Different CorrectionMethods in the 20th-Century
Simulationsa

JAN JUL

ave 5th 95th ave 5th 95th

S-RMSE
Not corrected 2.54 2.70 2.57 3.42 3.42 3.62
Vn 0.50 0.62 0.58 0.57 0.71 0.64
Cp 0.47 0.63 0.67 0.53 0.66 0.73
Vp 0.50 0.69 0.66 0.57 0.77 0.77
Proposed 0.50 0.68 0.66 0.57 0.75 0.73

SD
Not corrected 0.312 0.293 0.327 0.447 0.248 0.686
Vn 0.007 0.008 0.004 0.011 0.016 0.003
Cp 0.009 0.007 0.006 0.007 0.006 0.005
Vp 0.007 0.009 0.004 0.011 0.008 0.010
Proposed 0.007 0.007 0.005 0.011 0.010 0.008

S-RMSE
Not corrected 1.15 1.07 1.76 1.22 1.15 1.83
Vn 0.38 0.38 0.88 0.37 0.36 0.77
Cp 0.39 0.41 0.97 0.36 0.38 0.83
Vp 0.38 0.46 0.90 0.36 0.41 0.77
Cn-l 0.40 0.39 1.03 0.36 0.35 0.87
Cn-p 0.38 0.56 0.93 0.35 0.45 0.81
Proposed 0.37 0.38 0.94 0.35 0.35 0.82

SD
Not corrected 0.22 0.14 0.19 0.19 0.14 0.14
Vn 0.03 0.03 0.06 0.04 0.04 0.06
Cp 0.03 0.03 0.07 0.02 0.04 0.05
Vp 0.03 0.07 0.05 0.02 0.05 0.04
Cn-l 0.03 0.03 0.08 0.02 0.02 0.05
Cn-p 0.02 0.06 0.04 0.02 0.03 0.04
Proposed 0.03 0.03 0.05 0.03 0.03 0.04

aStatistics: i.e., S-RMSE as defined in equation (15) and the standard
deviation of S-RMSE among 12 GCMs. The upper table is for
temperature, and the lower one for precipitation. The columns of ave, 5th
and 95th denote the mean, 5th and 95th percentile of the 25-year data in
each period.
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Figure 1. Differences inDmta andDSD (of temperature) among methods for each of 12 GCMs used (See
the text for the definition ofDmta and DSD). The first column (MEAN) is the difference averaged over 12
GCMs. The error bar indicates the standard deviation of Dmta and DSD over all the grids in target region.
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Figure 2. Same as Figure 1, but for precipitation (The difference of Dmpr is divided by the uncorrected
mp in this figure).
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vary significantly depending upon the used bias-correction
method, although they do not differ much in the validation
period.
[38] Compared to other bias-correction methods, Dmta,

Dmpr,DSD andDCV of the bias-corrected data by using the
proposed new method are closer to that of uncorrected data.
However, note that there still remain small differences of
DCV between corrected and uncorrected data. This is due to
the difficulty in matchingDCV of corrected data with that of
uncorrected data as a result of placing a lower limit for the
Pr = 0 months (see the discussion in section 3.3).

4.4. Summary of Method Characteristics

[39] Table 4 summarizes the major characteristics of dif-
ferent methods, which are discussed according to their dif-
ferences inDmta,Dmpr,DSD andDCV of the bias-corrected
data. For example, the proposed new method has the char-
acteristic that the Dmta and DSD of corrected data are closer
to that of uncorrected data than other methods; and the Vn
method has the characteristic that the DSD and DCV of
corrected data are not identical to that of uncorrected data.
The differences in the corrected future projection data are
not small due to the differences in Dmta, Dmpr, DSD and
DCV caused by the method differences. However, the bias-
corrected data in the validation period are in general not

T
ab

le
4.

S
um

m
ar
y
of

th
e
C
ha
ra
ct
er
is
tic
s
of

B
ia
s-
C
or
re
ct
io
n
M
et
ho

ds
a

M
et
ho

d
V
n

C
n-
p

C
n-
l

V
p

C
p

P
ro
po

se
d

T
he

di
ff
er
en
ce

fr
om

ob
se
rv
at
io
na
l

da
ta

in
va
lid

at
io
n
pe
ri
od

(T
a)

S
ev
er
al

pe
rc
en
t
sm

al
le
r

th
an

ot
he
r
m
et
ho

ds
fo
r
5t
h

an
d
95

th
pe
rc
en
til
e

N
/A

N
/A

M
ed
iu
m

S
ev
er
al

pe
rc
en
t
sm

al
le
r

th
an

ot
he
r
m
et
ho

ds
fo
r

av
er
ag
e
of

25
ye
ar
s

M
ed
iu
m

T
he

di
ff
er
en
ce

fr
om

ob
se
rv
at
io
na
l

da
ta

in
va
lid

at
io
n
pe
ri
od

(P
r)

S
ev
er
al

pe
rc
en
t
sm

al
le
r

th
an

ot
he
r
m
et
ho

ds
fo
r

95
th

pe
rc
en
til
e

S
ev
er
al

pe
rc
en
t
la
rg
er

th
an

ot
he
r
m
et
ho

ds
fo
r

5t
h
pe
rc
en
til
e

S
ev
er
al

pe
rc
en
t
la
rg
er

th
an

ot
he
r
m
et
ho

ds
fo
r

95
th

pe
rc
en
til
e

S
ev
er
al

pe
rc
en
t
la
rg
er

th
an

ot
he
r
m
et
ho

ds
fo
r

5t
h
pe
rc
en
til
e

M
ed
iu
m

M
ed
iu
m

T
he

di
ff
er
en
ce

of
th
e
D
m t

a
be
tw
ee
n

un
co
rr
ec
te
d
an
d
co
rr
ec
te
d
da
ta

A
lm

os
t
ze
ro

N
/A

N
/A

A
lm

os
t
ze
ro

L
ar
ge
r
th
an

1
[K

]
fo
r

m
os
t
G
C
M
s

A
lm

os
t
ze
ro

T
he

di
ff
er
en
ce

of
th
e
D
S
D

be
tw
ee
n

un
co
rr
ec
te
d
an
d
co
rr
ec
te
d
da
ta

L
ar
ge
r
th
an

20
%

fo
r

m
os
t
G
C
M
s

N
/A

N
/A

L
ar
ge
r
th
an

5%
fo
r

m
os
t
G
C
M
s

A
lm

os
t
ze
ro

A
lm

os
t
ze
ro

T
he

di
ff
er
en
ce

of
th
e
D
m p

r
be
tw
ee
n

un
co
rr
ec
te
d
an
d
co
rr
ec
te
d
da
ta

L
ar
ge
r
th
an

5%
,
an
d

si
gn

if
ic
an
tly

la
rg
er

th
an

ot
he
r
m
et
ho

ds
fo
r
so
m
e
G
C
M
s

L
ar
ge
r
th
an

5%
L
ar
ge
r
th
an

5%
,
an
d
S
D

ov
er

ta
rg
et

re
gi
on

is
la
rg
er

th
an

ot
he
r
m
et
ho

ds
in

Ja
n.

A
lm

os
t
ze
ro

L
ar
ge
r
th
an

5%
A
lm

os
t
ze
ro

T
he

di
ff
er
en
ce

of
th
e
D
C
V

be
tw
ee
n

un
co
rr
ec
te
d
an
d
co
rr
ec
te
d
da
ta

L
ar
ge
r
th
an

ot
he
r
m
et
ho

ds
M
ed
iu
m

S
m
al
le
r
th
an

5%
L
ar
ge
r
th
an

ot
he
r
m
et
ho

ds
,

ex
ce
pt

fo
r
V
n
m
et
ho

d
S
m
al
le
r
th
an

5%
,
bu

t
S
D

ov
er

ta
rg
et

re
gi
on

is
la
rg
er

th
an

ot
he
r
m
et
ho

ds
ex
ce
pt

fo
r
th
e
V
n
m
et
ho

d

G
en
er
al
ly

sm
al
le
r

th
an

ot
he
r
m
et
ho

ds

a T
a:

te
m
pe
ra
tu
re
;
P
r:
pr
ec
ip
ita
tio

n;
S
D
:
st
an
da
rd

de
vi
at
io
n;

C
V
:
th
e
co
ef
fi
ci
en
t
of

va
ri
at
io
n.

Figure 3. Comparisons of the 12-GCM averaged changes
in the 95th percentile of precipitation from the baseline
period (based on observed data) to project period (based on
corrected data) among different methods. The change in
the 95th percentile of corrected precipitation data is divided
by the 95th percentile of observed precipitation data in the
baseline period. The error bar shows the standard deviation
among 12 GCMs.

WATANABE ET AL.: BIAS-CORRECTION-METHODS INTERCOMPARISON D23114D23114

9 of 13



significantly different among methods. Notice that the
present study only focuses on the bias-correction of global-
scale monthly Ta or Pr data. Different characteristics may be
identified if similar intercomparison is conducted with
respect to daily data and on the smaller continental or basin
scales.

5. Differences of Bias-Corrected Data in 21st
Century Simulations

[40] Since the extreme values of temperature and precipi-
tation are often the focus in various impact assessment
studies, it is important to investigate the difference in the
extremes of bias-corrected data caused by using different
correction methods. For this purpose, the globally average
changes in the 95th percentiles of Ta and Pr from the
baseline period (based on the observed data) to the projec-
tion period (based on the bias-corrected data) are calculated
and averaged over 12 GCMSs. Figure 3 compares the dif-
ferences of these changes among different methods. The
change of the 95th percentile of corrected precipitation is
divided by the 95th percentile of observed precipitation in
the baseline period, which means that the 95th percentile
precipitation is increased if the ratio plotted in Figure 3 is

over 1. Note that due to the averaging over 12 GCMs, the
difference in any specific GCM can be much larger than that
plotted in the figure. For Ta, the change in the 95th per-
centile is similar between the Vp and new method, but the
difference is more than 0.5 k between the Cp and new
method. For Pr, the difference is more apparent. The dif-
ference obtained by using the Cn-l and Cp method are larger
than that by the new method, and that by the Vn, Vp and
Cn-p methods are lower than the new method. The range
of the difference ratio in July obtained by using the Vn
method can be less than 1, which implies that the 95th
percentile of monthly Pr will decrease slightly in future.
[41] Figure 4 (temperature) and Figure 5 (precipitation)

compare the differences in the 95th percentiles of the
corrected data between the new method and other bias-
correction methods. The global spatial patterns in the fig-
ures show either the absolute difference or the absolute
difference divided by observed 95th percentile averaged
over 12 GCMs. For Ta, the difference between the new
method and Cp method is larger than 1K in most global
regions. The difference between the new and Vn method is
smaller, but more than 0.5 K in many regions, whereas the
difference between the new and Vp method is the smallest.
For Pr, the difference between the new and Vn method is

Figure 4. Differences averaged over 12 GCMs in the 95th percentile of the January temperature between
the new method and other bias-correction methods. Gray areas are the grids excluded from the analysis.
Difference is within 0.25 K for those grids without coloring.
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more than 5% in most regions, but the regions with the
differences >20% is less than the Cn-l, Cn-p and Vp
method. The difference between the new and Cp method
is smaller than other methods. The differences between the
new and the Cn-l, Cn-p and Vp method are more than
20% in some regions, but the areas where the difference is
smaller than 10% is larger than the Vn method. From
these comparisons, it can be concluded that the choice of

bias-correction methods is crucial for the impact assess-
ment studies of climate change.

6. Summary and Conclusion

[42] Bias-correction methods for monthly mean Ta and
total Pr data are intercompared in this study based on
12 GCM simulations in the Coupled Model Intercomparison

Figure 5. Same as Figure 4, but for precipitation. Each absolute difference is divided by observed 95th
percentile precipitation in the baseline period. Gray areas are grids excluded from analysis. Grids for
which the mean of observed data in baseline period is less than 50 mm/mo. are excluded from analysis,
because of difficulties in estimating variance in dry regions.
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Project phase 3 (CMIP3) [Meehl et al., 2007] archives.
Although the CMIP phase5 (CMIP5) data set which becomes
available recently is not used in this study, the presented
intercomparison methodologies and the findings obtained as
summarized below can also be applied and still valid to the
CMIP5 data set.
[43] Before the comparisons, previous bias-correction

methods are classified based on the two major criteria pro-
posed in this study, and a new method is proposed which
conserves the Dmta, Dmpr, DSD and DCV (i.e., the changes
in mean Ta and Pr, the standard deviation of Ta, and the
coefficient of variation of Pr, respectively, from the baseline
period 1948–1972 to the projection period 2073–2097)
between uncorrected and bias-corrected data. Two types of
comparisons are made to evaluate the characteristics of dif-
ferent methods. First, the bias-corrected data are compared
with the observed data during the validation period (1974–
1998), and second, the characteristics of Dmta, Dmpr, DSD
and DCV are compared among different methods.
[44] Results of the first comparison reveal that the differ-

ences between bias-corrected and observed data are not large
compared to that between bias-corrected and uncorrected
data. The changes from the baseline to validation period are
small so that the differences among bias-corrected data are
not apparent. The second comparison indicates that the
Dmta,Dmpr,DSD and DCV of bias-corrected data vary with
the methods used. The differences in Dmta, Dmpr, DSD and
DCV between uncorrected and corrected data are consider-
ably reduced by using the proposed new correction method.
The characteristics of Dmta, Dmpr, DSD and DCV of bias-
corrected data can be one of the indicators to evaluate bias-
correction methods. The proposed new method is useful to
correct the bias under the assumption that Dmta, Dmpr, DSD
and DCV are identical between uncorrected model simula-
tion data and bias-corrected data.
[45] The differences in the 95th percentile of corrected

data are also compared, and the result indicates the large
sensitivity to the choice of correction methods. Based on this
finding, the use of multiple bias-correction methods and
evaluation of the associated sensitivity in the specific target
regions are recommended as an important future study.
[46] One possible way to take into account the large sen-

sitivity of the differences among bias-correction methods is
to apply the multiple bias-correction methods and choose
one ensemble from each bias-corrected data. However, it
should be kept in mind that the difference in the character-
istics of each method when the final ensemble of bias-
corrected data is formed from each bias-corrected data,
because the weighted result can be biased if a number of
similar methods are used in the final ensemble. The issues
focused in this study are therefore useful to evaluate the
similarity of the bias-correction methods and the appro-
priate weights when forming the final ensemble.
[47] Generally, the use of multiple GCM simulations is

recommended to assess the impacts of climate change.
Therefore, the efficiency of bias-correction methods can also
be checked by using multiple GCM simulations as in this
study. While much validation work remains to be done, we
believe our study has strong merits for evaluating and opti-
mizing the bias-correction methods used in the impact
assessment studies.
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