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Improving parameter estimation and water table depth
simulation in a land surface model using GRACE
water storage and estimated base flow data
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[1] Several previous studies have shown the significance of representing shallow
groundwater in land surface model (LSM) simulations. However, optimal methods for
parameter estimation in order to realistically simulate water table depth have received little
attention. The recent availability of Gravity Recovery and Climate Experiment (GRACE)
water storage data provides a unique opportunity to constrain LSM simulations of
terrestrial hydrology. In this study, we incorporate both GRACE (storage) and estimated
base flow (flux) data in the calibration of LSM parameters, and demonstrate the
advantages gained from this approach using a Monte Carlo simulation framework. This
approach improves parameter estimation and reduces the uncertainty of water table
simulations in the LSM. Using the optimal parameter set identified from the multiobjective
calibration, water table simulation can be improved due to close dependence of both base
flow and total subsurface water storage on the water table depth. Moreover, it is shown
that parameters calibrated from short‐term (2003–2005) GRACE and base flow data can be
validated using simulations for the periods of 1984–1998 and 2006–2007, which implies that
the proposed multiobjective calibration strategy is robust. More important, this study has
demonstrated the potential for the joint use of routinely available GRACEwater storage data
and streamflow records to constrain LSM simulations at the global scale.
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1. Introduction and Background

[2] Land surface hydrologic processes can record previous
atmospheric forcing anomalies, and then manifest the effects
of these anomalies in the following season or year. Enhanced
knowledge about such land memory processes can improve
weather forecasting and climate prediction at seasonal‐to‐
interannual time scales [e.g., Dirmeyer, 2000; Koster et al.,
2000a; Koster and Suarez, 2001]. Several studies have
shown that deeper soil layers have longer memory of pre-
cipitation anomalies than surface layers do [e.g., Liu and
Avissar, 1999a, 1999b; Wu et al., 2002; Wu and Dickinson,
2004; Amenu et al., 2005].
[3] The representation of groundwater dynamics in land

surface models (LSMs) has received considerable attention
in recent years [e.g., Famiglietti and Wood, 1991, 1994;
Koster et al., 2000b; Liang et al., 2003;Maxwell and Miller,
2005; Yeh and Eltahir, 2005a, 2005b; Fan et al., 2007;
Miguez‐Macho et al., 2007; Niu et al., 2007]. These studies
have shown the importance of representing shallow ground-

water and its interaction with soil moisture in land surface
hydrologic simulations. For regions with shallow ground-
water, the distribution of soil moisture in the vertical profile is
highly dependent on water table dynamics. Gulden et al.
[2007] also indicated that the high sensitivity of simulated
terrestrial water storage variations to the selected parameter
sets could be reduced by incorporating a groundwater rep-
resentation into LSMs. While optimal methods for estimating
groundwater parameter in LSMs have received little attention
in the literature thus far, a recent study by Lo et al. [2008]
demonstrated the advantage of incorporating estimated base
flow in addition to streamflow measurements in LSM
parameter calibration.
[4] Issues regarding how to best specify parameters in

LSMs remain unclear. Several model intercomparison
studies such as Project for Intercomparison of Land‐surface
Parameterization Schemes (PILPS [e.g., Shao andHenderson‐
Sellers, 1996; Chen et al., 1997; Lohmann et al., 1998;
Bowling et al., 2003]) and Model Parameter Estimation
Experiment (MOPEX [Duan et al., 2006]) have shown that
with the same atmospheric forcing and common model
parameters, the same amount of runoff with contrasting base
flow and surface runoff compositions can be simulated. This
deficiency is related to variations in the partitioning of water
storage and runoff among LSMs, which in turn can be at-
tributed to the inability to accurately determine model
parameters related to these hydrologic processes. Despite
this, the concept of distinguishing various water storages and
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runoff components has seldom been appreciated in LSMs.
Global applications of LSMs with groundwater para-
meterizations generally assume spatially constant para-
meters across different climatic and hydrologic regions [Niu
et al., 2007]. The disadvantage of this assumption, however,
can be critical since no constraints are imposed on the water
table depth and base flow simulations [Lo et al., 2008]. The
primary reason for this simplification is the lack of appro-
priate observations and methodology to estimate the para-
meters on the global scale [Niu et al., 2007; Xie et al., 2007].
[5] New observations of terrestrial water storage (i.e., all

of the snow, ice, surface water, soil moisture, and ground-
water [Rodell and Famiglietti, 1999; Syed et al., 2008])
from the Gravity Recovery and Climate Experiment
(GRACE) satellite mission [Tapley et al., 2004; Wahr et al.,
2004] have provided an unprecedented opportunity to con-
strain LSM‐simulated water storage variations. The GRACE
mission now provides estimates of variations in terrestrial
water storage for areas larger than ∼150,000 km2 [Swenson
et al., 2006] and at time scales ranging from 10 days
[Rowlands et al., 2005] to monthly. Several previous studies
have compared GRACE observations of terrestrial water
storage to observations [Rodell et al., 2004b; Swenson et
al., 2006; Syed et al., 2007, 2008] and models [Ramillien
et al., 2004; Chen et al., 2005; Seo et al., 2006; Syed et
al., 2008], with close agreement. Of importance to the
present study, Rodell and Famiglietti [2002], Yeh et al.
[2006], Rodell et al. [2007], Strassberg et al. [2007], and
Swenson et al. [2008] have all demonstrated that GRACE
observations, combined with in situ data or model simula-
tions of the water mass above the water table, can be used to
estimate groundwater storage variations. In addition,
GRACE has also been applied to evaluate [Swenson and
Milly, 2006; Niu and Yang, 2006; Niu et al., 2007] or
constrain [Zaitchik et al., 2008; Werth et al., 2009] water
storage simulations in LSMs. Ramillien et al. [2008] provide
a thorough review of GRACE applications in hydrology.
[6] Our previous study [Lo et al., 2008] has indicated that

base flow information estimated from observed streamflow
data can help constrain water table depth simulations in
LSMs. On the basis of this and the availability of GRACE
data, here we explore whether parameter estimation and
water table simulation can be enhanced by including both
GRACE and base flow data in an optimization procedure.
Several studies have shown that model parameter uncertainties
can be greatly reduced through a multiobjective calibration
framework [e.g., Gupta et al., 1998; Yapo et al., 1998;
Houser et al., 2001;Crow et al., 2003]. In this study, GRACE
total water storage anomalies (i.e., deviations from the long‐
term mean) and estimated base flow data will be utilized to
estimate LSMparameters. In addition, it will be demonstrated
that the use of multiobjective calibration can improve simu-
lation of water table depth compared to using only GRACE or
base flow data.

2. Model and Data

2.1. Community Land Model 3.0 With a Groundwater
Parameterization

[7] The model used in this study is the Community Land
Model 3.0 [Bonan et al., 2002; Oleson et al., 2004] coupled
with an unconfined aquifer model originally developed by

Yeh and Eltahir [2005a, 2005b] as a flexible module to
couple to any LSM to represent shallow water table
dynamics. The coupled model is referred to as CLMGW by
Lo et al. [2008], in which the water table is interactively
linked to the soil moisture model through the exchange of
groundwater recharge (i.e., soil drainage flux) and capillary
rise at the bottom of the soil column. For detailed descrip-
tions of the physics in the CLMGW, the reader is referred to
Yeh and Eltahir [2005a, 2005b]. In the following, only the
surface runoff and base flow generation schemes are briefly
described for the purpose of this paper.
[8] The surface runoff generation scheme in the CLMGW

is the same as the SIMTOP (simple TOPMODEL‐based)
surface runoff scheme developed by Niu et al. [2005]. It
accounts for both saturation‐excess and infiltration‐excess
runoff as described by the following equation [Oleson et al.,
2004; Niu et al., 2005]:

Rs ¼ Fmaxe
�czf Qin þ ð1�Fmaxe

�czf Þmax ð0;Qin � ImaxÞ; ð1Þ

where Rs [L/T] is the surface runoff, Fmax [] is the maximum
saturated fraction for a grid cell, c [] is a coefficient for
fitting an exponential function to the cumulative distribution
function of the topographic index (c = 0.5 as suggested by
Niu et al. [2005], and will be used throughout this study),
z [L] is the water table depth, f [1/L] is the soil decay factor
(i.e., the length scale for the exponential decrease in the
saturated hydraulic conductivity with depth), Qin [L/T] is the
effective precipitation, and Imax [L/T] is the soil infiltration
capacity.
[9] On the basis of observed data in eight catchments in

Illinois, base flow (Qgw) at the local scale was formulated
using the following nonlinear threshold relation by Yeh and
Eltahir [2005b]:

Qgw ¼ Q0ðd0 � dgwÞ if 0 < dgw < d0
Qgw ¼ 0 if dgw > d0

; ð2Þ

where Q0 [1/T] is the outflow constant inversely propor-
tional to the aquifer residence time, d0 [L] is the threshold
depth at which groundwater runoff is initialized, and dgw [L]
is the water table depth. When applying equation (2) to a
grid cell in an LSM, the grid‐scale groundwater runoff
(Qgw) cannot be determined solely from the grid‐mean water
table depth (dgw) because of the spatial variability of dgw
and the nonlinear relationship in equation (2). Yeh and
Eltahir [2005b] proposed a statistical‐dynamical approach
to account for the influence of the subgrid heterogeneity of
water table depth on the grid scaleQgw, which can be derived
by integrating equation (2) with respect to an assumed sta-
tistical distribution of dgw. The resulting grid‐scale ground-
water runoff Qgw can be written as [Yeh and Eltahir 2005b,
equation (5)]

Qgw ¼ Q0�
�

�ð�Þ d0
ð�� 1Þ!

��
� e��d0

X��1

k¼0

ð�� 1Þ!
k!

dk0
���k

" #(

� �!

��þ1
� e��d0

X�
k¼0

�!

k!

dk0
���kþ1

" #)
; ð3Þ

where G(a) is the gamma function and a and l are the shape
and scale parameters of the Gamma distribution of water table
depth, respectively. The two statistical parameters (a and l)
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are related to each other through the grid‐mean water table
depth [Yeh and Eltahir, 2005b, equation (4)].

2.2. Water Table Depth and Streamflow Data

[10] In this study, the model simulation domain is in the
state of Illinois, where a unique hydrologic data set covering
most of the hydrologic variables exists. In the following, the
data used in this study for model simulation, calibration, and
validation are briefly summarized. Further details of this
extensive data set, including the time spans, sampling loca-
tions and quality control, are given by Yeh et al. [1998], Yeh
and Famiglietti [2009], and Lo et al. [2008].
[11] Water table depth data consist of monthly observa-

tions from 19 shallow groundwater wells scattered
throughout Illinois. These wells, maintained by the Illinois
State Water Survey, have been used to monitor the response
of unconfined aquifers to climatic fluctuations. The uncon-
fined aquifers in Illinois are relatively shallow, with the
state‐averaged water table depth about 3 m and the spatial
distribution among the 19 wells ranging between 1 and 10 m
[Eltahir and Yeh, 1999]. The major soil texture around these
wells is silt loam [Yeh et al., 1998].
[12] Streamflow data collected by the U.S. Geological

Survey consist of daily discharge records at the outlets of the
three largest river basins in Illinois: the Illinois River, the
Rock River, and the Kaskaskia River. The total drainage
area of the three rivers covers more than two thirds of the
total area of Illinois. The locations of groundwater well and
streamflow networks are shown in Figure 1.
[13] In this study, the 24 year (1984–2007) daily dis-

charge records from the three major basins are weighted by
their drainage areas to yield an estimate of average stream-
flow in Illinois. The 10 wells with complete records for
the 1984–2007 period are used for model calibration and
validation. To be consistent with the time span of GRACE
data, the 2003–2005 spatially averaged monthly water table
depth and streamflow data are used for model calibration,
while the data from 1984 to 1998 and 2006–2007 are used
for model validation.

2.3. GRACE Total Water Storage Anomalies

[14] The most recently released GRACE data (RL04),
produced by the Center for Space Research (CSR) at the
University of Texas at Austin [Chambers, 2006], were used
in this study. The data extend over more than 5 years from
August 2002 to January 2008 (excluding June 2003 and
January 2004). Spatial smoothing of GRACE data is required
to decrease the influence of noisy short‐wavelength Stokes
coefficients in the water storage estimates. We have tested
the sensitivity of the smoothing kernel (300 km and 500 km),
and found that the magnitude of GRACE‐derived land water
storage estimates is rather insensitive to the half width of the
kernel used in our study domain (Illinois). As another in-
dependent check, global data sets of simulated total water
storage from the WaterGAP Global Hydrology Model
(WGHM) [Döll et al., 2003; Güntner et al., 2007] and the
Global Land Data Assimilation System (GLDAS) [Rodell et
al., 2004a] are also used to test the Gaussian filtering bias.
Results (not shown here) indicate that both the phase and
amplitude of total water storage anomalies match well
between the cases of 300 km smoothing and the one‐degree
model simulations (i.e., no filtering adopted) averaged over

Illinois. Moreover, we have also tested total water storage
variations in theWGHM (no filtering adopted) for the regions
surrounding Illinois with areas 2 and 4 times greater than
that of the state. We found that the storage variations
averaged over the larger surrounding regions are close to
those within Illinois. This indicates that the 300 km
smoothing radius is suitable for use in this study domain.
Therefore, throughout this study, a Gaussian averaging kernel
with a half width of 300 km is adopted. Spatially averaged
total water storage anomalies over Illinois from 2003 to 2005
are used for the calibration of CLMGW parameters, while the
data from 2006 to 2007 are used for validation.

2.4. Atmospheric Forcing Data

[15] To drive the CLMGW model in an off‐line simula-
tion, seven input atmospheric forcings are required: precipi-
tation, downwelling solar radiation, downwelling longwave
radiation, near‐surface air temperature, air humidity, air
pressure, and wind speed. Precipitation and temperature
were taken from the National Climate Data Center (NCDC;
http://www.ncdc.noaa.gov/oa/ncdc.html) Integrated Surface
Hourly data set. Seventeen NCDC stations uniformly dis-
tributed in Illinois were used to derive state mean values by
simple averaging. Air humidity, pressure, wind speed, and
solar radiation are taken from National Centers for Envi-
ronmental Prediction/Department of Energy (NCEP/DOE)
6 hourly reanalysis data [Kanamitsu et al., 2002] and linearly
interpolated to the 3 hourly resolution. A state‐wide average
(87.5°W–90.5°W, 37°N–42.5°N) of the NCEP/DOE Re-
analysis Data was retrieved to derive the spatially averaged
forcing in Illinois. In addition, solar radiation is bias cor-
rected by adjusting the monthly mean to be consistent with
the NASA Surface Radiation Budget data set (http://eosweb.
larc.nasa.gov/PRODOCS/srb/table_srb.html). The above
forcings were used for the 1984–2005 simulations. For the
2006–2007 simulations, the seven input atmospheric forcings
were taken from the North American Land Data Assimilation
System (NLDAS) [Cosgrove et al., 2003]. Illinois state‐
averaged forcing data are used to drive the CLMGW as a
single‐point simulation for the Monte Carlo simulations
presented in section 3.

2.5. Base Flow Estimation

[16] Following Lo et al. [2008], a digital recursive filter
technique was adopted here to separate base flow from daily
streamflow records in Illinois. For the equations used in the
digital filter technique, see Lo et al. [2008] and the refer-
ences cited below. The digital recursive filter technique has
gained popularity in the recent hydrologic literature [e.g.,
Nathan and McMahon, 1990; Chapman, 1991; Arnold et
al., 1995; Mugo and Sharma, 1999; Eckhardt, 2005].
These studies have indicated that the digital recursive filter
technique is efficient, reproducible, and objective. The
performance of the digital recursive filter technique has been
considered as satisfactory as other traditional hydrograph
separation approaches [Arnold et al., 1995, 2000; Mau and
Winter, 1997] and physically based simulations of base flow
[Szilagyi, 2004]. Although the digital filter technique lacks a
physical basis, it is more objective and easier to implement
than traditional graphical separation techniques. Consider-
ing the potential global implementation of the CLMGW
model, the digital filter approach is perhaps the only method
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currently suitable for this purpose. It yields a first‐order
estimate of base flow without being limited by data avail-
ability, which is extremely important for global‐scale land
surface modeling.

3. Multiobjective Calibration Using GRACE Data
and Base Flow Estimates

[17] Swenson et al. [2006, Figure 4] showed a close
agreement between the total water storage anomalies
derived from GRACE and the combined in situ soil mois-
ture and groundwater measurements in Illinois, although

GRACE underestimated the peaks in observed total water
storage. Yeh et al. [1998] and Rodell and Famiglietti [2001]
have shown that groundwater storage change in Illinois is
equal in magnitude to soil moisture change, and both are
typically the largest components of monthly terrestrial water
storage variations in Illinois relative to snow and surface
water.
[18] Figure 2 presents scatterplots between the estimated

base flow and GRACE total water storage anomalies against
the observed water table depth averaged over the Illinois for
the period of 2003–2005. The 22 year (1984–2005) esti-
mated base flow and water table depth is also plotted in

Figure 1. Locations of observational networks of groundwater well (green circles) and streamflow
gauges (red starts), and the three largest river basins in Illinois.
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Figure 2c for comparison. As shown, a high correlation
exists between these three variables: The correlation coef-
ficient is 0.82 (p‐value < 1%) between base flow and water
table depth and 0.87 (p‐value < 1%) between total water
storage anomalies and water table depth, both for the period
of 2003–2005, and 0.76 (p‐value < 1%) between base flow
and water table depth for the 22 year (1984–2005) period.
[19] Motivated by the strong correlation shown in Figure 2,

in this study we utilize the routinely measured GRACE data
and estimated base flow simultaneously in model parameter
calibration to better constrain water table depth simulations
in the CLMGW. In the following, the feasibility of the
proposed approach will be tested within a Monte Carlo
simulation framework, whereby the calibration parameters
are randomly sampled from their physically reasonable
ranges. The additional advantage gained from this approach
relative to the single‐objective calibration strategy using
only base flow or GRACEwater storage will be demonstrated
based on the evaluation of water table depth simulations.

3.1. Calibration Parameters

[20] Parameters related to water storage and runoff gen-
eration in the CLMGW can be categorized into the following
groups: (1) groundwater parameters, which are base flow
parameters d0 and Q0 (equations (2) and (3)), the parameter
characterizing the statistical distribution of water table
depth, a (equation (3)), and the specific yield of the aquifer,
Sy; and (2) soil parameters, which are surface runoff‐ and
infiltration‐related parameters c, f, and Fmax (equation (1)),

and the soil pore size index B from the water‐retention
equation of Clapp and Hornberger [1978], i.e.,

K ¼ Ksat
�

�sat

� � 2Bþ3

y ¼ y sat
�

�sat

� ��B

;

ð4Þ

where K [L/T] is the hydraulic conductivity, Ksat [L/T] is the
saturated hydraulic conductivity, � [] is the soil water con-
tent (%), �sat [] is the soil water content at saturation (i.e.,
porosity), B [] is the empirical soil pore size index, y [L] is
the soil water potential, and ysat [L] is the saturated soil
water potential.
[21] Consistent with previous work [Lo et al., 2008], the

parameters with the largest influence on runoff generation
and water table dynamics were f, B, d0, and Q0. Only these
parameters are treated as calibration parameters in this study
in order to keep the number of total simulations economic.
Table 1 summarizes the reasonable physical ranges of the
calibration parameters. These parameters have combined
direct and indirect influences upon the partitioning of runoff
components as well as the simulation of other hydrologic
variables (infiltration, surface runoff, groundwater recharge,
soil moisture, and groundwater storages). The general sen-
sitivities of model simulations of land surface hydrologic
variables can be summarized as follows: (1) Parameter f
critically controls the infiltration rate and hence determines
surface runoff and the available water for groundwater
recharge, which balances base flow over the long‐term; (2) B

Figure 2. Scatterplots of observed water table depth versus (a) estimated base flow from spatially
average daily streamflow data in Illinois and (b) Gravity Recovery and Climate Experiment (GRACE)
total water storage anomalies over the Illinois for the period of 2003–2005. (c) Scatterplots of water table
depth and estimated base flow for the 22 year (1984–2005) period.
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affects the temporal distribution of groundwater recharge
more so than its amount (determined by f ); (3) d0 signifi-
cantly controls both the amount and temporal variation of
base flow; it also determines the long‐term average water
table depth, which further indirectly feeds back to affect the
amount of surface runoff via equation (1); and (4) Q0 affects
the temporal variation of base flow rather than the amount
(determined by d0). It should be mentioned that due to water
balance constraints, the calibration parameters d0 and Q0

exhibit a strong compensating effect. Given a specific
amount of average base flow (determined by the residual of
precipitation, evapotranspiration, and surface runoff), a
larger (smaller) d0 would facilitate (inhibit) base flow gen-
eration, and thus a higher tendency for a smaller (larger) Q0

to be optimized. Figure 3 schematically illustrates these
direct and indirect feedbacks.
[22] It is well known that various model parameter com-

binations can reproduce equally well simulations of total
runoff due to parameter interactions, but the flow parti-
tioning, the simulations of water table depth, and other
hydrologic variables can be rather different, i.e., the equi-
finality problem from which most hydrologic models have
suffered [e.g., Sorooshian and Gupta, 1983; Beven and
Binley, 1992; Beven and Freer, 2001]. In order to reduce
the equifinality difficulty, it is necessary to calibrate model
parameters simultaneously with respect to multiple objec-
tives in order to have realistic partitioning among various
water flux and storage components. In section 3.2, we will
demonstrate the improvement in water table depth simula-
tion obtained from utilizing a multiobjective calibration
framework, i.e., the combination of GRACE water storage
and estimated base flow data into the parameter estimation
procedures of the CLMGW.

3.2. Monte Carlo Simulations

[23] A Monte Carlo simulation framework is adopted here
to demonstrate whether a multiobjective calibration strategy
can better constrain water table simulations in the CLMGW.
We have conducted 10,000 simulations by a Monte Carlo
search over the feasible parameter space. Table 1 sum-
marizes the physically reasonable ranges of four calibration
parameters (f, B, d0, and Q0). Each parameter value was
randomly (independently) sampled from uniform distribu-
tions that span the feasible parameter space (Table 1). All
10,000 simulations were driven by the 10 year (1996–2005)
3 hourly atmospheric forcing data for Illinois described in
section 2.4. In order to remove the effect due to uncertain
initial conditions, the 1996–2002 period was treated as spin‐
up, and only the 3 year (2003–2005) simulations were used
in the analysis. Each of the 10,000 simulations was scored
by a cost function (F) defined to be the weighted sum of the

normalized root mean square error (NRMSE) of base flow
and total water storage:

F ¼ Rb*NRMSEb þ ð1� RbÞ*NRMSEt

NRMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

ðoi � piÞ2
s

1

�ðoÞ
; ð5Þ

where the subscript b denotes base flow, t denotes the total
water storage anomalies, n is the number of sample points, o
is the observation, p is the model estimate, and s(o) is the
standard deviation of observations. The weighting ratio Rb is
uniformly distributed from 0 to 1 with intervals of 0.1. If Rb

is taken as zero or one, F becomes single‐objective. The
optimal Rb will be determined as the value that minimizes F
in equation (5).
[24] Figure 4 shows the mean and standard deviation of

the NRMSE for the water table depth simulations for the top‐
scoring 0.5% (50) of the total 10,000 runs for different
weighting ratio Rb. The single‐objective calibrations are at
the edges of Figure 4: Rb = 1 corresponds to base flow
calibration, whereas Rb = 0 to the total water storage cali-
bration. As seen in Figure 4, the minimum water table depth
NRMSE is found to be at Rb = 0.7; therefore the combination
of 70% of estimated base flow information and 30% of
GRACE total water storage information results in the optimal
calibration. Compared to the single‐objective calibration
using base flow (total water storage) only, the multiobjective
calibration improves the NRMSE by about 41% (80%),
which suggests that water table depth simulation can be
further improved by combining information from these two
sources. Crow et al. [2003] indicated that the choice of the
best threshold value (0.5%) from the Monte Carlo simula-
tions is arbitrary. We therefore have also tested the best
0.25%, 1%, 1.5%, 2%, and 2.5% thresholds. Results were
found to be insensitive to these changes.
[25] Figure 5 shows the 3 year (2003–2005) monthly time

series of simulated water table depth, total water storage
anomalies (i.e., deviations from the 3 year mean), and base
flow of the best 0.5% (50) runs for the cases of Rb = 0 (total
water storage calibration alone), Rb = 1 (base flow calibra-
tion alone), and Rb = 0.7 (identified optimal weighting
factor). For comparison, observed monthly water table
depth, total water storage, base flow, and streamflow are
also plotted in Figure 5. It can be seen from Figure 5a that

Table 1. Feasible Ranges of Four Calibration Parameters in the
CLMGW Model Used in the Monte Carlo Simulation Framework

Parameter Unit Ranges

Decay factor, f per meter 0.5–3.0
Clapp and Hornberger, B 5–11
d0 m 0.5–3.5
Q0 per month 10–280

Figure 3. Schematic of the direct and indirect feedbacks
for the four parameters ( f, B, d0, and Q0).
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when using multiobjective calibration, water table depth
simulations converge to the observation and exhibit less
spread compared to the two single‐objective calibrations. In
addition, when calibrating with GRACE data alone, the
performance of total water storage anomaly simulations is
better than the other two cases as clearly shown in Figure 5b.
On the other hand, the base flow calibration alone gives better
base flow simulations (Figure 5c).
[26] Simulations of total water storage anomalies for the

case of Rb = 0.7 are better constrained than that of Rb = 1,
which can be attributed to incorporating 30% of the con-
straint by GRACE data (Figure 5b). Figure 5 also shows a
tendency that when using multiobjective calibration, simu-
lations are closer to that by using base flow calibration. The
reason is that the optimal weighting factor is the combina-
tion of 70% of base flow and 30% of GRACE data, i.e., the
base flow provides more information in the multiobjective
framework in this case. In addition, Figure 5 shows that the
water table depth simulations have wider spreads compared
to the total water storage anomalies and base flow simula-
tions for different calibration cases. This also indicates that
the regional water table depth simulation is relatively more
difficult to be constrained in LSMs than total water storage
simulation.
[27] Figure 5b shows that the simulated total water storage

variations are larger than the GRACE signal, particularly
after 2004. Lo et al. [2008] have shown that the seasonal
cycle of water table depth becomes progressively flatter as the
simulated mean water table depth increases. Correspond-
ingly, the simulated total water storage also shares the same
characteristic, i.e., the storage variations tends to be smaller
when mean water storage decreases. Therefore, if only
GRACE data are used in the calibration, in order to yield
better storage simulation, the model tends to simulate lower
water storage resulting in a lower water table depth, as
shown in Figure 5a. Moreover, notice that the simulated
base flow sometimes even exceeds observational total runoff
(Figure 5c) if the model is only calibrated using GRACE,

although it does improve total water storage simulations as
seen most notably in the second half of 2005 (Figure 5b).
[28] In general, GRACE provides monthly variations of

water storage rather than the absolute value so the monthly
variations of water table depth can be better captured by
incorporating GRACE data, but not the location of mean
water table depth [Lettenmaier and Famiglietti, 2006].
Therefore it is necessary to incorporate base flow informa-
tion, which gives a first‐order constraint on mean water
table depth [Lo et al., 2008], while using GRACE to con-
strain the groundwater storage behavior.
[29] Figure 6 plots the distribution of parameter values for

the best 0.5% (50) runs for the cases ofRb = 0,Rb = 1, andRb =
0.7, respectively. The values of four calibration parameters
are normalized by the corresponding maximum values within
the feasible ranges as listed in Table 1 (with 1 denoting the
maximum). From the comparison of two single‐objective
calibration cases (Figure 6), it is clearly seen that the para-
meters f and B (d0 and Q0) exhibit higher identifiability for
the case of total water storage (base flow) calibration. Figure 6a
shows that the optimal value of f is small for the best 50 runs
for the GRACE calibration case; namely, using any combi-
nation of another three parameters with a low f from those
plotted in Figure 6a, the water table variations can be simu-
lated well. However, when f is low, surface runoff is high
(because of higher saturated fractional area; see equation (1))
and less infiltration into the soil, resulting in a deeper water
table depth [Lo et al., 2008], which explains why GRACE‐
only calibration tends to adjust to a lower mean water table
depth as shown in Figure 5b.
[30] Note that parameters d0 and Q0 show a strong com-

pensating effect in their optimal values, i.e., a large d0 with a
small Q0, and vice versa. Their compensating effect on the
water table depth can be clearly seen from Figure 7, where
three groups of monthly groundwater rating curves of the
best 0.5% runs for the cases of Rb = 0, 0.7, and 1 are com-
pared to the observed (state‐averaged) groundwater rating
curve. The groundwater rating curve, as in equation (2)

Figure 4. Mean and standard deviation of water table depth NRMSE for the top‐scoring 0.5% of the cost
function (F) from the 10,000 runs with a specific Rb choice. The analysis is for 2003–2005.
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for the local scale and equation (3) for the grid scale, defines
a one‐to‐one relationship between base flow (Qgw) and
water table depth (dgw) [Yeh and Eltahir, 2005b]. The group
of green rating curves is plotted from equation (3) with
various combinations of d0 and Q0 calibrated using base
flow; the red curves calibrated using both GRACE and base
flow; and the yellow curves calibrated using GRACE. Black
dots are the “observed” base flow estimated from the digital
filter technique, which are plotted versus observed water
table depth. Three distinct groups of calibrated rating curves
can be discerned: The red curves cross the observed data,
whereas the green and yellow form the lower and upper
bounds, respectively, that envelope the observed rating
curve. Therefore the water table depth is shallower (deeper)

than observed, as shown in Figure 5a, when using only base
flow (GRACE) in calibration. Moreover, the yellow and
green rating curves exhibit significantly wider spreads com-
pared to the red curves, which is also reflected in the simu-
lated water table depth of single‐objective calibration, and
increases the uncertainty of model simulations of single‐
objective calibration as can be seen from the standard
deviation of NRMSE plotted in Figure 4.
[31] Taken together, the above implies that after the in-

corporation of both base flow and GRACE information, the
identifiability of calibration parameters (f, B, d0, and Q0) is
enhanced, and hence a more accurate groundwater rating
curve can be derived with less uncertainty. Moreover, some
of the calibration parameters adjust to converge toward their

Figure 5. Three‐year (2003–2005) monthly time series of simulated (a) water table depth, (b) total water
storage anomalies (i.e., deviations from the 3 year mean), and (c) base flow of the best 0.5% (50) runs for
the cases of Rb = 0 (total water storage calibration alone), Rb = 1 (base flow calibration alone), and Rb =
0.7 (identified optimal weighting factor).
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optimal ranges when the additional objective is incorporated.
This not only improves model simulations but greatly
enhances parameter identifiability and alleviates the problem
of equifinality.

4. Validation

[32] It is important to validate whether the optimal
parameter set identified from 2003 to 2005 simulation can
reproduce the observations of water table depth, streamflow,
and total water storage in another preferably longer time
period. The split‐sample approach is therefore utilized here
for this purpose. Since GRACE data are available only after
August 2002, two additional simulations (1984–1998 and
2006–2007) were conducted. The first simulation was in fact
from 1975 to 1998, with 1975–1983 treated as the spin‐up

period, while the second was from 1998 to 2007, with 1998–
2005 treated as spin‐up.
[33] The ratio (Rb) of the cost function (F) obtained from

the Monte Carlo simulation framework is 0.7 so the cost
function (F) can be rewritten as

F ¼ 0:7 * NRMSEb þ 0:3 * NRMSEt : ð6Þ

We further use the Shuffled Complex Evolution (SCE) algo-
rithm [Duan et al., 1992] to determine the single optimal
parameter set for the validation test. The simulation period for
the SCE test is 2003–2005. The major advantages of SCE
are the competitive evolution and complex shuffling, which
can avoid the tendency of falling into local minima [Duan et
al., 1993].While using the SCE tominimizeF in equation (6),
the sampled parameter values span over the ranges listed in
Table 1. Consequently, the following unique parameter set

Figure 6. Normalized parameter values for the four parameters of the best 0.5% (50) runs for the cases
of (a) Rb = 0 (total water storage calibration alone), (b) Rb = 1 (base flow calibration alone), and (c) Rb =
0.7 (identified optimal weighting factor). The values of four calibration parameters have been normalized
by the maximum in their feasible ranges as listed in Table 1. The analysis is for 2003–2005.
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was identified: f = 1.07 m−1, B = 8.87, d0 = 1.59 m, and Q0 =
155 month−1. Because of the optimal searching process in
SCE, the use of this algorithm will tend toward obtaining
more base flow information in the parameter space, and thus
leads to better water table simulations compared to the best
run from the 10,000 Monte Carlo simulations (i.e., the root
mean square error of water table depth simulation improves
from 0.35 m to 0.28 m).
[34] Figures 8a, 8b, and 8c compare simulated monthly

water table depths, base flow, and total runoff to observations
for both periods of 1984–1998 and 2006–2007. Figure 8d
shows simulated total water storage anomalies for the
2006–2007 period compared to GRACE data. In general,
simulations using the optimal parameter set reproduce the
observed monthly variability of base flow and water table
depth reasonably well, in particular the anomalously low
(high) base flow and water table depth in the extreme 1988
drought (1993 flood) conditions in the U.S. Midwest. The
root mean square error and the correlation coefficient for
base flow and water table depth simulations are 5.21 mm/
month (0.83, p‐value < 1%) and 0.48 m (0.82, p‐value <
1%), respectively, for the entire 17 year simulation. How-
ever, obvious underestimation in the total runoff simulation
is apparent in Figure 8c, most likely due to the underesti-
mation of surface runoff. Lo et al. [2008] explain that when
average atmospheric data are used as model input forcing,
part of the temporal variability in precipitation are smoothed
out; as a result surface runoff is underestimated. Although

the optimal parameter set based on base flow and total water
storage calibration is used in Figure 8, it may not improve
the surface runoff simulation due to the different flow gen-
eration mechanisms and controlling parameters. Figure 8d
also shows that monthly variations of the total water storage
anomalies are well captured, except for the first half of 2007.
[35] The longer‐term (1984–1998) validation test has

shown that the identified optimal parameter set from the
multiobjective calibration can be applied beyond the cali-
bration period. This also implies that the multiobjective
calibration strategy demonstrated here has the potential to
enhance the robustness of model parameter estimation even
when the period of calibration data is relatively short, as the
use of GRACE data in this study.

5. Evaluation of Soil Moisture Simulation

[36] Figure 9a shows the simulated soil moisture profile
averaged from 1984 to 2003 for the cases of Rb = 0, 0.7, and
1.0 from the best 50 runs of the Monte Carlo simulations
compared to the observed spatially averaged soil moisture
profile. The default CLM3.5 (with groundwater model
developed by Niu et al. [2007]) simulation is also plotted for
comparison. As seen in Figure 9a, none of these four
simulations can reproduce the observed vertical soil moisture
profile. Zeng and Decker [2009] also have shown that the
NCAR CLM has limitations in reproducing the vertical soil
moisture profile and have proposed a modified Richards

Figure 7. Three groups of groundwater rating curves (i.e., average water table depth dgw versus base
flow Qgw) obtained from the top‐scoring 0.5% runs of the base flow‐only calibration, 30% GRACE
and 70% base flow calibration, and GRACE‐only calibration, respectively, compared to the observed
groundwater rating curve in Illinois. Green rating curves are plotted from equation (3) with various
combinations of d0 and Q0 calibrated from estimated base flow data; the red curves are calibrated from
both GRACE and base flow data; the yellow curves are calibrated from GRACE data. Black dots are the
scatterplot of observed water table depth versus estimated base flow in Illinois. The analysis is for
2003–2005.
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equation as a potential solution. Since our focus in this study
is on the improvement of water table depth simulations, soil
moisture is not calibrated. However, the parameters in the
modified Richards equation could be considered as additional
calibration targets if the improvement of soil moisture
simulation is a major concern.
[37] Moreover, the results from three calibration cases are

consistent with those in water table depth simulations
(Figure 5a). Since the water table depth is shallower (deeper)
than the observation while using base flow (GRACE) alone
in calibration, the resulting soil moisture is wetter (drier).
[38] Figures 9b and 9c show the seasonal cycle compar-

isons of the observations, CLM3.5, and the average from the
best 50 runs of the Monte Carlo simulations using CLMGW.
As shown, in all simulations the seasonal amplitude of surface
layer soil moisture (0–0.5 m) is too small to capture the

observed variability. For deep layers (0.5–1.6 m), however,
the case of Rb = 0.7 well reproduces the observed seasonal
variations in term of the phase and amplitude. For the
default CLM3.5, the seasonal amplitude is too small for
the surface layers and too large for the deep layers.

6. Discussion and Conclusions

[39] Although several recent land surface modeling
studies have demonstrated the importance of water table
dynamics and various groundwater parameterizations have
been developed, the problem of how to best specify
groundwater parameters for realistic simulations of water
table depth dynamics has received little attention. Here, we
use GRACE total water storage data combined with esti-
mated base flow data in the model calibration. This approach

Figure 8. The 17 year (1984–1998 and 2006–2007) monthly time series of simulated (a) base flow,
(b) water table depth, and (c) total runoff using the optimal parameter set identified from the multiobjective
calibration in comparison with observations. (d) Simulated total water storage anomalies for the 2006–
2007 period compared to the GRACE data.
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improves parameter estimation, i.e., enhances parameter
identifiability, and reduces the uncertainty of water table
simulations in an LSM. Using the optimal parameter set
identified from the multiobjective (base flow and total water
storage in this study) calibration, water table simulation can
be improved due to the close dependence of base flow and
total water storage on the water table depth. It has also been
shown that parameters calibrated from the short‐term (2003–
2005) GRACE and base flow data can be validated for other
time periods (1984–1998 and 2006–2007), which implies
that the proposed multiobjective calibration strategy is ro-
bust. Importantly, this study demonstrates the potential for
the joint use of routinely available GRACE and streamflow
measurements to constrain LSM simulations at the global
scale.
[40] This study shows that total water storage and base

flow have two distinct sensitivities among calibrated para-
meters. The soil parameters f and B have more influence on
the total water storage simulation, whereas the groundwater
parameters d0 and Q0 have more influence on the water table
simulations. Hence, while using the dual objectives in the
CLMGW calibration, optimal parameter sets can be identi-
fied from their respective optimal ranges from which it lead
to improved water table simulations.
[41] Crow et al. [2003] pointed out that it is necessary to

incorporate at least one surface energy flux and one state
variable to calibrate LSMs in order to obtain correct simu-

lations. In this study, we use estimated base flow, a flux, and
GRACE total water storage, a state, to calibrate CLMGW
model. In general, the data on state variables (e.g., soil
moisture and water table depth) are extremely difficult to
obtain at the regional and global scale, but streamflow
records are available in many locations of the world and
hence are most commonly used in calibration. Nevertheless,
GRACE data can provide unique information on the varia-
tions of water storages at the global scale for LSM cali-
bration that is unlikely to be achieved by using steamflow
alone. Moreover, it should be noted that since the generation
mechanisms of surface runoff and base flow are quite dif-
ferent, calibrations using base flow and water storage in-
formation are not necessary to improve surface runoff
simulation. If streamflow data are used as an additional
calibration target, surface runoff simulation can be better
constrained.
[42] In this study, we have demonstrated a convincing

strategy of using GRACE and estimated base flow data to
constrain LSM simulations. For regions lacking water table
observations, the information derived from GRACE and
base flow can be used to constrain water table simulation in
LSMs, while improving the partitioning between fluxes
(surface runoff and base flow) and storage (soil moisture
and groundwater) components. Therefore it can be con-
cluded that groundwater parameters in LSMs can be better
calibrated by the combined use of GRACE and estimated

Figure 9. (a) Simulated soil moisture profile averaged from 1984 to 2003 for the cases of Rb = 0, 0.7 and
1.0, from the best 50 runs of the Monte Carlo simulations compared to the observed spatially averaged
soil moisture profile. The default CLM3.5 simulation is also plotted for comparison. (b) Seasonal cycle
comparisons of the observations, CLM3.5, and the average from the best 50 runs of the Monte Carlo si-
mulations using CLMGW for the surface layer (0–0.5 m) and (c) for the deeper layer (0.5–1.6 m).
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base flow data. In this case study using Illinois data, the
weighting ratio (Rb) is found to be 0.7, indicating that the
contribution to water table simulation from base flow infor-
mation is larger than that from GRACE. However, this result
is not transferable to other regions. In deep groundwater
areas where base flow only contributes a small percentage
of streamflow, GRACE data may have a more dominant
weight. When applying the proposed multiobjective calibra-
tion approach at large scales, we suggest that Rb and the
resultant calibration parameter sets should be derived
regionally in order to account for the spatial heterogeneity
of land hydrologic processes. Similarly, when applying the
proposed approach where other storage components (soil
moisture, snow, lakes or wetlands) than groundwater
dominate terrestrial water storage variations, the correlation
between water table depth and the GRACE signal may be
weaker. Therefore the contribution of GRACE information to
groundwater parameter calibration could be smaller (the Rb

closer to 1) than the case of Illinois.
[43] The purpose of the multiobjective calibration

framework proposed in this study is to constrain water table
depth simulations in an LSM. Hence, if the GRACE total
water storage signal can be successfully decomposed into
different components, the proposed approach would be
more robust for constraining groundwater storage variations.
However, GRACE signal decomposition is still an open
research question. Frappart et al. [2008] estimated surface
water storages in Negro River basin by using the TOPEX/
POSEIDON (T/P) altimetry satellite. Thus the contributions
of soil moisture and groundwater to the total storage changes
can be isolated from GRACE. In fact, a new NASA satellite
mission, SurfaceWater and Ocean Topography (SWOT), has
been proposed to provide high‐resolution measurements of
surface water bodies such as lakes, wetlands, and rivers.
This together with other ongoing satellite missions (e.g.,
AMSR‐E for snow and soil moisture retrieval) hold great
potential to help decompose GRACE total water storage
signal, and hence are essential for applying the proposed
multiobjective calibration framework globally.
[44] It should be noticed that GRACE data provide

monthly variations of water storage rather than the absolute
values of storages. Therefore, whereas the monthly varia-
tions of water table depth can be improved by the calibration
with GRACE data, the position of mean water table depth
may not be accurately located. Therefore it is necessary to
incorporate base flow information to constrain mean water
table depth, since a strong nonlinear relationship exists
between water table depth and base flow [Eltahir and Yeh,
1999]. For regions without streamflow data, GRACE can
still provide a first‐order constraint on the water storage
variations. Recently, Syed et al. [2009] used GRACE and
reanalysis data to estimate terrestrial freshwater discharge,
which can be used in model calibration for those regions
without streamflow observations. Moreover, for those
regions where the GRACE signals are relatively small, cali-
bration using GRACE data alone will not be effective.
Therefore when using GRACE alone to constrain global
LSM simulations, it is important to consider the amplitude
of total water storage variations.
[45] Finally, the downwelling longwave radiation used in

this study was estimated from an empirical formula as a
function of near‐surface atmospheric vapor pressure and
temperature [Oleson et al., 2004]. Yang et al. [1997] found a

large uncertainty when estimating longwave radiation using
this formula. We compared the estimated longwave radia-
tion to the GLDAS data set and found that the difference in
the annual mean (1980–2005) is negligible (322.9 W/m2

from the empirical formula versus 322.7 W/m2 from the
GLDAS data). However, the estimated longwave radiation
is higher (lower) than that of GLDAS data during summer
(winter), which results in the higher snow depth during the
winter and higher evapotranspiration during the summer.
Yang et al. [1997] have shown that in order to more accu-
rately estimate longwave radiation, it is necessary to con-
sider cloud type and cloud amount. Phase II of NLDAS,
which provides hourly data from January 1979 to present at
1/8th ‐degree resolution over the contiguous United States,
is available online. For future research, this data set can be
used to provide more accurate atmospheric forcing for off-
line LSM simulations.
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