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[1] The role of rivers in total terrestrial water storage
(TWS) variations is evaluated in 29 basins. The contribution
of individual storage components to total TWS is
investigated by using ensemble hydrological simulations
with river routing. The observed Gravity Recovery And
Climate Experiment (GRACE) TWS data are used to validate
model simulations. It is found TWS simulations are more
accurate when river storage is taken into account except for
dry basins. Rivers play different roles in various climatic
regions as indicated by two new indices quantifying the
significance of each TWS component and their interactions.
River storage, which effectively includes downslope
movement of shallow groundwater, explains up to 73% of
TWS variations in Amazon. It also acts as ‘‘buffer’’ which
smoothes TWS seasonal variations particularly in snow-
dominated basins. Neglecting river storage may lead to
mismatch in the amplitude and phase of TWS seasonal
variations compared to the GRACE observations.
Citation: Kim, H., P. J.-F. Yeh, T. Oki, and S. Kanae (2009),
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1. Introduction

[2] Terrestrial water storage (TWS), i.e., the sum of soil
moisture, groundwater, snow and ice, water in biomass, and
surface water in lakes, reservoirs, wetlands and river chan-
nels, play a significant role in the climate system, primarily
through the exchange of water and energy at the land
surface. TWS controls the partitioning of precipitation into
evaporation and runoff with significant implications for
hydrologic extremes [Yeh et al., 1998; Eltahir and Yeh,
1999; Hirschi et al., 2006; Yeh and Famiglietti, 2008].
[3] Despite its importance, the role of TWS in the global

hydrological cycle has received little attention relative to
other hydrologic processes, and there are no extensive
networks currently in existence for monitoring TWS
changes. The recently launched Gravity Recovery And
Climate Experiment (GRACE) mission [Tapley et al.,
2004] has provided a unique new opportunity to monitor
TWS variations from space. This has allowed, for the first
time, observations of the variations of total TWS in large
river basins to continental scales [e.g., Syed et al., 2008].
However, a critical evaluation of the potential to isolate
GRACE signals into individual TWS components has yet to

be conducted. Since GRACE is not able to measure vertical
profile of TWS, hydrological modeling [Rodell et al., 2004;
Güntner et al., 2007; Syed et al., 2008] is a valuable tool for
the partitioning of GRACE signals into individual storage
component.
[4] Among terrestrial hydrological processes, river plays

a significant role in large basins through the transport of
freshwater to the ocean, which affects water balance of the
oceans and forms a part of hydrological circulation on the
Earth. Also, river discharge is the major part of available
renewable freshwater resource [Oki and Kanae, 2006].
However, most of the previous studies of GRACE hydrol-
ogy applications do not considered river processes are
important contributors to TWS variations. Although a pilot
modeling study by Oki [1999] and recent satellite observa-
tions [Frappart et al., 2008; Han et al., 2009] have both
indicated the dominant role of river and surface water
storage variations in the Amazon basin, it is still not clear
how significant river storage would contribute to the sea-
sonal variability of total TWS under various climate and
hydrological conditions.
[5] In this study, we investigate the temporal variations of

three major TWS components; snow water, soil moisture and
river storage, by using the hydrologic modeling approach.
The simulated TWS is validated against GRACE data from
2002 to 2007 in 29 world large river basins. The contribu-
tions of individual components to the total TWS variations
are quantified, and their interactions are examined.

2. Methods

2.1. Ensemble Land Surface Simulations

[6] The modeling framework used in this study consists
of a land surface model (LSM), the Minimal Advanced
Treatment of Surface Interaction Runoff (MATSIRO)
[Takata et al., 2003], and a global runoff routing scheme,
the Total Runoff Integrated Pathway (TRIP) [Oki and Sud,
1998]. MATSIRO has a single layer of canopy, three
variable snow layers with the subgrid distribution of snow
cover, and five soil layers of 4-m total thickness. TRIP is a
global river routing scheme which routes LSM-simulated
runoff through river networks based on topographic gradient.
Based on mass conservation, i.e., dS/dt = Flowin � Flowout,
river storage S is formulated as a single linear reservoir,
and calculated at each grid point of TRIP, according to: S(t0 +
dt) = exp �ue=ddtð ÞS(t0) + (1� exp �ue=ddtð Þ)Flowin

d=ue , where
ue is the effective velocity, d is the distance between grid
boxes, and dt is the calculation interval. The effective
velocity ue is an integrated mean velocity of rainwater
traveling from land surface to river mouth through various
paths, thus TRIP is able to effectively simulate unrepresented
fast sub-surface processes as a part of its dynamics [Oki et al.,
1999]. In this study, river dynamics provide the driving force
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to transport surface and sub-surface runoff. Therefore, the
river storages calculated by TRIP are the water storages
moving sub-horizontally toward the stream outlets including
both surface flow and downslope movement of shallow
groundwater. The MATSIRO-TRIP modeling framework
has been applied to the studies of terrestrial water cycle
estimation [Hirabayashi et al., 2005] and the assessment of
hydrological extremes in both regional [Yoshimura et al.,
2008] and global scales [Hirabayashi et al., 2008].
[7] The model simulations in this study span over the

period of GRACE mission (2002 to 2007) with a global
1�� 1� resolution. Atmospheric forcing variables (precipita-
tion, temperature, radiations, pressure, humidity, and wind
speed) are based on the atmospheric reanalysis data provided
by Japanese Meteorological Agency (JMA) Climate Data
Assimilation System (JCDAS) [Onogi et al., 2007], and an
altitude correction has been applied to temperature, pressure
and humidity [Ngo-Duc et al., 2005]. Ensemble simulations
are conducted by using five observed global precipitation
datasets (Table 1) in order to reduce the uncertainty in
forcing variables. All the reanalysis and observed precipi-
tation datasets are bi-linearly interpolated or aggregated into
the 1� � 1� grids. Observed daily or monthly precipitation
is disaggregated based on the temporal distribution of 6-
hourly reanalysis precipitation field. Input land surface
properties including land cover, soil texture, soil and veg-
etation parameters are specified as same as for the Global
Soil Wetness Project 2 (GSWP2) [Dirmeyer et al., 2006],
and other MATSIRO-specific parameters follow the default
values of Takata et al. [2003].
[8] In this study, total TWS consists of three main

components: soil moisture, snow water and river storage. Soil
moisture and snowwater are calculated as the arithmetic mean
of LSM ensemble simulations. In order to obtain optimal river
storage simulations for the realization of temporal variations
of effective velocity, the Bayesian Model Averaging (BMA)
[Duan et al., 2007] is applied to ten TRIP runs with perturbed
effective velocities ranging from 0.1 to 1.0 m/s. The average
of ensemble simulations is optimized to maximize the weight-
averaged likelihood of ensemble members, and the observed
Global Runoff Data Center (GRDC) discharge is taken as the
training data. The procedure is performed for each basin
respectively, since effective velocity is highly dependent on
basin-specific topography and river morphology. The simu-
lated total TWSA is spatially averaged over each basin for the
comparison with GRACE data.
[9] The GRACE data of the version ‘dpc200711’ with a

1� � 1� global resolution and a 0km smoothing are used in
this study, which are provided for averaging pixels over
larger areas, for example, a hydrologic basin. The arithmetic
mean of GRACE TWS anomalies from the Center for Space
Research (CSR), GeoForschungsZentrum (GFZ) and Jet
Propulsion Laboratory (JPL) are used in the comparison.
We have also compared and found the differences among

three GRACE datasets are negligible (see http://hydro.iis.u-
tokyo.ac.jp/�hjkim/tws@2009GRL).

2.2. Component Contribution Ratio and Component
Exchange Intensity

[10] In order to compare how individual storage compo-
nents contribute to total TWS variations and the interaction
among them, the following two new indices are devised:
[11] 1. Component Contribution Ratio (CCR): defined

as the ratio of mean absolute deviation (MAD) of a

component (1
N

PN

t

St � S
�
�

�
�; here, N is number of months) to

total variability (TV) which is the summation of MAD of

each component (
PStorages

S

MADS),

CCRS ¼ MADS

TV
ð1Þ

where S is the indices of soil moisture (SM), snow water
(SW), and river storage (RS) storage components. The CCR
quantifies the average contribution of each storage compo-
nent to TV.
[12] 2. Component Exchange Intensity (CEI): defined as

one minus the ratio of MAD of total TWS to TV,

CEI ¼ 1�MADTWS

TV
ð2Þ

which quantifies the intensity of component interactions
(i.e., amplification or compensation) due to different
amplitude and phase of each component. The CEI equals
to one when components are entirely out of phase and
completely compensates each other, while equals to zero
when they are perfectly in phase.

3. Results

[13] From the total 178 global river basins, those with the
size larger than 220,000 km2 were initially chosen. Since
the quality of river discharge simulations also reflects to
some extent the quality of TWS simulations, basins in
which the comparison between simulated and observed
(GRDC) river discharge indicates a low correlate coefficient
(CC) (<0.5), or a high Root-Mean-Squared-Error (RMSE)
(>100 mm/month), or a worse CC and RMSE than the case
without runoff routing, were excluded in this study. This
results in the final 29 river basins to be used in the following
analyses.

3.1. Role of River Storage Component in Terrestrial
Water Storage Variations

[14] According to CCRRS and mean ambient temperature
(TAvg), 29 basins were classified into five groups based on
the following criteria: dry (CCRRS < 0.15 Chari, Murray-

Table 1. Specifications of Five Observational Precipitation Data Used in This Study

Product Type Spat. Res. Temp. Res. Period

GPCC full [Rudolf and Rubel, 2005] Gauge 1.0� Monthly 1901–2007
PREC/L [Chen et al., 2002] Gauge 1.0� Monthly 1948–
CPC unified [Chen et al., 2008] Gauge 0.5� Daily 1979–
GPCP v2 [Adler et al., 2003] Satellite-Gauge 2.5� Monthly 1979–
CMAP [Xie and Arkin, 1997] Satellite-Gauge 2.5� Monthly 1979–
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Darling, Niger, and Zambezi), temperate (0.15 < CCRRS <
0.30 Amu Darya, Colombia, Danube, Don, Mississippi,
Northern Dvina, Pechora, and Ural), cold (0.30 < CCRRS <
0.55 Amur, Mackenzie, Neva, Ob, St. Lawrence, Volga, and
Yenisei), wet (CCRRS > 0.55 Amazon, Brahmaputra, Chang
Jiang, and Orinoco), and polar (TAvg < 270 K Indigirka,
Khatanga, Kolyma, Lena, Yana, and Yukon). In general,
basins were properly classified except for Northern Dvina
and Pechora that are expected to be classified into the cold
region. For these two basins, the simulated TWSA were
overestimated by exaggerated snow water variations (not
shown) at the expense of underestimated CCRRS.
[15] Figure 1 demonstrates the influence of river routing

to TWS simulations in the temporal variations and the
relationship between CEI and the improvement of TWS
simulations based on the comparison between the simula-
tions and GRACE data. Both the coefficient of determina-
tion (CD) and the normalized root-mean-squared-error
(NRMSE) show substantial improvements in TWS simu-
lations with river routing except for the basins where the
role of river is negligible. Among total 29 basins, four dry
basins (Niger, Zambezi, Chari and Murray-Darling) do not
show significant improvement in TWS simulations consid-
ering river storage, since the influence of incorporating river
storage on the phase shift of total TWS is negligible in these
basins because of relatively small amount of runoff. This is
possibly caused by overestimated quick runoff generation
by MATSIRO since the depth of soil layers (4m) may not be
enough to simulate low-frequency storage changes in
deeper soils or groundwater in dry regions properly.

[16] It is also found (Figures 1c and 1d) that the role of
river is more significant in the basins where storage com-
ponents intensively interact with each other in the transition
of seasons, or when river network contains a relatively large
amount of water. The improvement of TWS simulations
when river storage is considered appears to be proportional
to CEI, and each basin group is clearly distinguished by
climate characteristics. Increase of CD is higher in cold
basins than in polar basins, indicating that the role of river
in buffering direct runoff caused by rapid snow melting is
weaker in polar basins because of lower temperature.
NRMSE also shows similar relationship, but basins located
in wet regions form another distinct group because their
large river storage results in significant improvements due
to additional amplitude of total TWS variations.

3.2. Temporal Variations of Terrestrial Water
Storage Component in Major River Basins

[17] Eight out of total 29 river basins are selected for the
further analyses by considering climatic and geographical
balances. Figure 2 plots the temporal variations of river
discharge, TWSA, and relative TWS for the 8 basins in
comparison with corresponding observations. The identical
plots for the rest 21 basins can be found at http://hydro.iis.u-
tokyo.ac.jp/�hjkim/tws@2009GRL. To calculate relative
TWS, absolute values of three storage components are
summed up, and the minima of individual components are
subtracted since their exact storage sizes are uncertain. The
mean of this relative TWS is added to the GRACE TWSA
anomaly for the comparison shown in Figure 2c. River
discharge simulations for both cases (with and without
TRIP routing) are compared to observed GRDC data, while
TWS simulations compared to GRACE TWS. As shown,
for all 8 basins, the seasonal changes in both discharge and
TWS simulations are well reproduced, and the inter-annual
variability of total TWS is also well captured. When river
routing is conducted, all basins show amplitude attenuation
and one- to two-months delay in the peak of simulated
discharge. This also improves TWS simulations in a differ-
ent manner for the basins in different climate regions.
[18] Amazon (Orinoco) is located in wet region without

snow where the simulations indicates the dominant role of
river. River storage including downslope movement of
shallow groundwater explains 73% (64%) of total variabil-
ity of TWS. It shows a similar phase to soil moisture in
seasonal changes, which amplifies the amplitude of total
variability of TWS. The weak net exchange among the
components leads to low CEI value (0.03 (0.06)). For the
basins in temperate regions such as Mississippi (Danube),
soil moisture dominates TWS variations, which contributes
46% (46%) of total variability of TWS. However, river and
snow are still of important components, and they contribute
up to 28% (27%) and 26% (27%) respectively. The seasonal
cycle of total TWS is smoothed compared to the case
without considering river routing.
[19] The role of rivers is more significant in snow-

dominated than soil moisture-dominated regions. Total
variability of TWS in Yenisei (Amur) is partitioned into
59% (48%), 31% (36%), and 9% (16%) for snow water,
river storage, and soil moisture, respectively. Although the
basins in snow dominated regions have a slightly greater
value of CCRRS than the basins in temperate regions, in

Figure 1. Comparison of the statistics of total TWS
simulations between the cases with river storage and without
river storage: (a) CD and (b) NRMSE. The relationship
between CEI and the improvement of TWS simulation
accuracy in (c) CD and (d) NRMSE when river storage is
considered. Blank circles (�), lower triangles (!), filled
circles (.), upper triangles (~), and crosses (+) denote the
basins in dry, temperate, cold, wet, and polar regions,
respectively.
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those basins rivers control the seasonal variations of total
TWS. It is found that river effectively smoothes the total
TWS in cold basins. Moreover, the Amur basin exhibits
rather weak TWS seasonal variations, which are difficult to
be simulated if only soil moisture and snow water are
considered as major TWS components. The intensive inter-
action of water storage components is indicated by the higher
CEI values (0.56 (0.69)) than other basins in different
climatic regions. However, river effect is rarely significant

in the dry basins (Niger and Zambezi) where CCRSM explains
most of TWS variations, and other components are negligible
because of insufficient precipitation for runoff generation.

4. Conclusions

[20] In this study, we have quantified the contribution of
individual water storage components and evaluated the
importance of rivers in the seasonal variations of TWS by

Figure 2. (a) Comparison of seasonal cycles of observed GRDC discharge (black solid line), discharge routed by TRIP
(red solid line), and runoff without routing (gray dashed line). (b) Comparison of seasonal cycles of GRACE TWSA (black
solid line), simulated TWSA with river storage (red solid line), simulated TWSA without river storage (gray dashed line),
and the major water storage components in TWS. Gray crosses (+), green circles (.), and blue triangles (~) represent snow
water, soil moisture, and river storage, respectively. (c) Inter-annual variations of relative TWS: GRACE observation (black
dot), and the TWS simulations with river storage (red solid line) and without river storage (gray dashed line). Each area
shaded by blue, gray, and green indicates the portion of river storage, snow water, and soil moisture in the simulated relative
TWS, respectively.
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using ensemble hydrological simulations with river routing
in 29 river basins worldwide. The simulated river discharge
and total TWS are validated against GRDC discharge and
GRACE TWS data, respectively, with close agreement
found in most basins. When river storage is taken into
account, the model-simulated total TWS is substantially
improved in terms of both amplitude and phase, which
indicates significant contribution of river storage to the
seasonal TWS variations. However, it should be noted river
storage in this study lumps downslope movement of shal-
low groundwater unrepresented in our LSM, since TRIP
routes both surface and sub-surface runoff to the river
mouth. Rivers not only explain different portions of total
TWS variations (from almost 0 in dry basins to 73% in
Amazon), but also play different roles in different climatic
regions. Fluvial transport is the dominant terrestrial hydro-
logical process in wet basins (e.g., Amazon and Orinoco),
and it acts as a ‘‘buffer’’ which smoothes the seasonal
variations of total TWS particularly in snow-dominated
basins (e.g., Amur and Yenisei). The indices developed in
this study well describe the dependence of basin TWS
variations on each water storage component, which in turn
provide a criterion for geographical classifications and
water resources applications based on TWS characteristics.
It is concluded that river storage, which has not received
much attention in previous hydrological simulations, is an
important major water storage component in addition to soil
moisture and snow water storages. Without an appropriate
representation of river processes in TWS simulations, it may
not be able to reproduce the amplitude and seasonal
variations of observed GRACE TWS data.
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