Syllabus: <u>ADVANCED HYDROLOGY (2011)</u>

Lecturers: <u>Pat Yeh, Kei Yoshimura, Shinta Seto, Kazuao Oki</u>. Hours: <u>Thursday</u>, <u>1:30pm-3:10pm</u> Venue: @ <u>As 311 Komaba II Campus</u> Note: June 2: As313 July 21: An403

Email: Pat YEH (<u>patyeh@iis.u-tokyo.ac.jp</u>) Kei YOSHIMURA (<u>kei@iis.u-tokyo.ac.jp</u>) Shinta SETO (<u>seto@rainbow.iis.u-tokyo.ac.jp</u>) Kazuo OKI (<u>kazu@rainbow.iis.u-tokyo.ac.jp</u>)

Web Page: http://hydro.iis.u-tokyo.ac.jp/~patyeh/teaching.htm

Recommended Textbook

Brutsaert, Wilfred, 2005, "<u>Hydrology: An Introduction</u>", Cambridge Univ. Press (both Japanese and English version are available)

Reference Textbooks:

- 1. Dingman, 2002, <u>Physical Hydrology</u>, Prentice-Hall, Inc.
- 2. Chow, V.T., D.R. Maidment, and L.W. Mays, 1988, <u>Applied Hydrology</u>, McGraw-Hill Book Company.

Evaluation:

60% Term Project(Final Presentation (30%), Written Report (30%))40% Lecture Attendance

Lecture Topics and Dates:

1.	 Hydrological cycle and Water Balance (Yeh) Basic Definition and Terms Global and Regional Hydrological Cycle and Water Balance Surface/Subsurface Hydrological Processes in a Basin Global Energy Balance 	May/12
2.	 Infiltration (Yeh) Infiltration capacity Horton's infiltration model Green-Ampt equation Philip equation 	May/19
3.	 Unsaturated-zone Processes (Yeh) Porosity, Soil moisture content, Relative saturation, Field ca point Gravity force vs. Capillary force Richards Equation 	May/26 pacity, Wilting
4.	 Runoff and River Flow (Yeh) Runoff Generation mechanisms, River flow routing Unit Hydrograph and Storm hydrograph Hydrograph separation and Baseflow recession Geomorphology 	June/2
5.	 Groundwater (Yeh) Darcy's Law Regional groundwater aquifer Groundwater equation, Analytical and numerical solutions 	June/9
6.	 Remote Sensing of Water Quality (Oki K.) Principles of remote sensing Case I water and case II Water Chlorophyll, Suspended Solids 	June/16
7.	 Water Quality (Oki K.) River Basin Pollution load such as nitrogen and phosphorus Mapping the Potential Annual Pollution Load in the River Ba 	July/23 sins
8.	Precipitation, Water Vapor, Cloud, Snow (Seto) Cloud and Precipitation 	June/30

	 Cloud microphysics Statistical characteristics of precipitation rate Rain gauge 	
9.	 Remote Sensing in Hydrology (Seto) Rain drop size distribution Weather radar Global precipitation maps 	Jul/7
10.	 Atmospheric circulations (Yoshimura) Dynamic motion of Atmosphere; momentum equations Hadley/Ferrel/Polar circulations and Walker circulations 	July/14 and Coriolis force S
11.	 Evapotranspiration processes (Yoshimura) Albedo and Bowen ratio Penman equation and Penman-Montieth equation Big-leaf models 	July/21
12.	 Isotope Hydrology (Yoshimura) Stable water isotopes and isotopic fractionation Rayleigh's Distillation Process Spacio/temporal distributions of precipitation water iso 	July/28 topes
13.	Final Project Presentation I (All Lectures)	Aug/ 4
14.	Final Project Presentation II (TBD, if necessary)	Aug/ 11