1st MAHASRI/AMY Workshop January 8, 2007 University of Tokyo, JAPAN

Operational Hydro-Meteorological Facility of Vietnam

Nguyen Thi Tan Thanh National Hydro – Meteorological Service (NHMS) of Vietnam

content

- 1. Introduction
- 2. Network of Stations
- 3. Operational High Resolution Model in NCHMF
- 4. The application of CTS model to forecast storm surge in Vietnam Coastal Zone
- 5. Contribution to AMY
- 6. Collaboration in MAHASRI

1 - INTRODUCTION

- Up to now, Vietnam H-M network has more than 1200 stations and gauging places.

- Modernization of the network is going on
- Improving the operational forecasting High -Resolution Models output
- More actively participate in the regional and international collaboration

2 – Network of Stations

- 2.1. Meteorological station network: 174 stations
- 57 class l
- 69 class II
- 48 class III
- Among this:
- 25 International reported stations
- 125 National synoptic reported Stations
- 29 Agro-Meteorological reported stations

- 2.2. Rainfall measurement stations/places: 764 places
- 371 raingauges located in the hydro-meteorological station network
- 393 raingauges located outside of the hydrometeorological station network

2.3. Upper – Air Stations

- 3 radiosounding stations with DigiCORA MW31 – RS92 + 2 new stations in 2007
- 8 upper air wind stations
- 3 conventional weather radar stations and 3
 Doppler WR stations + 2
 new DWR up to 2008

2.4. Marine H-M station network: 17 stations

- 11 stations on island
- 5 coastal stations
- 1 station on drilling rig

- 2.5. Gauging-station network: 231 stations
- 59 class I
- 21 class II
- 151 class III

- 32 air-environment stations integrate with meteorological observation stations

- 93 observation of water-environment stations integrate with gauging-stations

- Marine research vessel

Parameter	TRS-2730	DWSR 93C	DWSR 2500C
Beam width	$1.25^{\circ} \pm 0.1$	$1.0^{\circ} \pm 0.1$	$1.0^{\circ} \pm 0.1$
Speed of antenna	2.5°/sec	6°/sec - 36°/sec	6°/sec – 36°/sec
Number of	NA	5-15 in 20min	5-15 in 20min
elevation/volume scan		(120, 240, 480km)	(120, 240, 480km)
Range of scan (km)	64,128,256,	30, 60, 120, 240,	30,60,120,240,
	384	480	480
PRF (Hz)	250	250/1180	250/1180
Wavelength (cm)	5.5	5.6	5.6
Transmitter	Magnetron	Magnetron	Magnetron
Power, Pulse length	250Kw, 2µs	250Kw, 2/0.8µs	250Kw, 2/0.8µs
Sample size		35-50	35-50
Processed video signals	8 bit, logZ	16 bit, I, Q, logZ	24 bit, I,Q, logZ
Clutter suppression	NA	Doppler filter	Static map/Doppler
			filter
Callibration (noi se	NA	Every vol.scan	Every vol.scan
source)			
Calibration	NA	1 per month	1 per month
(sig.generator)			
Real-time basic products	PPI (Z, R)	PPI (Z, U, V, R, S)	PPI (Z,U,V,R,S)
	<u>RHI (Z, R)</u>	<u>RHI (Z, U, V, R, S)</u>	<u>RHI (Z,U,V,R,S)</u>
		CAPPI, ETOPS,	CAPPI, ETOPS,
Derived products	NA	CMAX, HMAX,	CMAX, HMAX,
		PCP, VIL, VAD,	PCP, VIL, VAD,
Warning products		TRACK, GUST,	TRACK, GUST,
(need criteries and real —	NA	VECTOR,	VECTOR,
time raingauge		SUBCATMENT,	SUBCATMENT,
calibration)		FLASH FLOOD	FLASH FLOOD

Table 1: Main Technical Parameters of Weather Radars in Viet Nam

3. operational Hm Model in NCHMF

International GTS channels

- HaNoi MOSCOW: 100 bps
- HaNoi -Bejing: 75 bps
- HaNoi Bangkok: 1200bps
- PCVSAT: HaNoi Bejing: 9600bps

3.1. NWP models

- Run operationally HRM (28 km) since 5/2002, (14km) since 7/2004.
- ETA model run (22 km) in experimental mode since June 2005, semi-operational (May, 2006)
- Barotropic models for TC tracking (BARO & BAR) for typhoon season 2003, 2004, 2005, 2006
- Post processing (display & diagnostic output): GSM(JMA), TLAPS (BoM), AVN(NCEP), NOGAPS, ECMWF ...
- Other software to serve as tools for forecasters

Fig 1: Cloud pictures (IR1) captured from MTSAT

at 2230 UTC and 2330 UTC 16 AUG 2006

Fig 2: Accumulated precipitation estimatted from MTSAT (left) and Observation (right) (from 12UTC 16/08 to 00UTC 17/08/06): Cua Ong 49, Bai chay 40, Ha Noi 46

Fig 3: Rainfall Observation (from 12UTC 16/08 to 00UTC 17/08/06): Cua Ong 49, Bai chay 40, Ha Noi 46,

Mong cai : 76, Yen Bai: 69, Son Tay: 67, Hoa Binh : 92, Thai Binh : 102

Fig 4: Left : Big Inundation in Hanoi caused by very heavy rainfall (during only 2 hours)

Left : Nui Truc Street

at 19UTC 14 July 2006

Right : Nguyen Khuyen Street

at 00UTC 17 Aug 2006

Fig 5: Streamline and Vorticity (+12h) at 850hPa, Initial data at 12UTC 16 AUG 2006 (from HRM model)

12UTC 16 AUG 2006 (from HRM model)

HANOI (21.00N 105.75E) HRM-NCHMF

Fig 7: Height and Time cross section at Hanoi statton

From 12UTC 16 Aug to 12UTC 18 Aug 2006

Fig 8: Vertical profile and Equivalent potential temperature at Hanoi statton Form 12UTC 16 AUG to 12UTC 18 AUG 2006

Fig 9: Accumulated Rainfall forecast (every 6h, initial at 12UTC 16 Aug 2006) for Da, Thao, Lo and Red River basins (00-06,06-12,12-18,18-24)

Fig 10: Accumulated Rainfall forecast (every 6h, initial at 12UTC 16 Aug 2006) for Da, Thao, Lo and Red River basins (24-30,30-36,36-42, 42-48)

Fig 11: Cloud picture (IR1) captured from MTSAT

at 0030 UTC 18 AUG 2006

Fig 12: Rainfall Observation (from 00UTC 15/08 to **00UTC 18/08/06):** Cua Ong 171 Bai chay 189 Ha Noi 132 Mong cai : 237 **Yen Bai: 212** Son Tay:226 Thai Binh : 274

Cloud image IR-1 from GOES-9 at 00UTC 9/10/2003

Surface pressure, streamline (initial data GME+GSM) at 00UTC 9/10/2003

Cloud image IR-1 from GOES-9 at 00UTC 10/10/2003

Surface pressure, streamline and accumulated rainfall +24h (initial data GME) at 00 UTC 9/10/2003

Surface pressure, streamline and accumulated rainfall +24h (initial data GME+GSM) at 00 UTC 9/10/2003

3.2. Hydrological Forecast

Hydrologic Model FIRR using 4 combined methods:

Unit Hydrograph, Duhamel Integral, Kinematic Wave vµ Reservoir

Inflow forecast into Hoa Binh Reservoir on Da River; flow at YenBai on Thao River, at TuyenQuang on Lo River and HoaBinh reservoir regulation.

Distributed Model MARINE (France) with DEM và GIS, rainfall-runoff forecast inflow into Hoa Binh Reservoir on Da River

Observed and forecasted rainfall

Forest Coverage Map

Out put Q~t

Short-term flood forecasting software for the Red River system with lead time 6 – 48hours; using rainfall-runoff, related water level/discharges methods, SSARR model and step multi-regression

4. The application of CTS model to forecast storm surge in Vietnam Coastal Zone

-Used of CTS model to simulate the storm surge to every storm hit to Vietnam Coastal from 2000 to now.

- Some results of storm surge forecasts for 4 storms: Kaemi (8/2000), Wukong (9/2000), Vicente (6/2005) and Jelawat (6/2006).

Province	Location	Hanoi Time (Hr/D/M/Y)	Storm surge (cm)
Ha Tinh	Cua Sot	18/22/08/2000	74
	Cua Nhuong	15/22/082000	74
Quang Binh	Cua Ron	17/22/08/2000	68
	Cua Gianh	18/22/08/2000	70
	Nhat Le	18/22/08/2000	69

Table 1: The calculated storm surge at locations (KAEMI)

Table 2: Comparison of calculated and observed maximum stormsurge value of Typhoon KAEMI, 2000

Location	Observed (cm)	Calculated _ (cm)	Error	
			∆cm	<i>δ</i> %
Cua Ron	64	68	4	6
Nhat Le	71	69	-2	3
Cua Viet	75	69	-6	9
	Mean		∆ = 4 cm	₽ 6%

The calculated and observed storm surge is show in figures 3, 4 and in tables 2, 3 and 4. The development of the water elevation at Hondau station during storm surge is show in figure 5.

Table 3: Comparison of calculated and observed storm surge ofTyphoon Wukoong, 2000

Location	Observed (cm)	Calculated (cm)	Error	
			∆cm	<i>8</i> %
Cua Hoi	124	146	22	15
Cua Sot	132	128	-4	3
Vung Ang	81	83	2	2
Cua Nhuong	139	101	-38	38
Mean		∆ = 17 cm	<i>&</i> 15%	

Table 4: Comparison of calculated and observed maximum storm surge value of Typhoon VICENTE, 2005

Location	Observed (cm)	Calculated (cm)	Error	
			∆cm	<i>5</i> %
Hon Dau	100	111	11	10
Ba Lat	132	118	-14	12
Cua Hoi	135	145	10	7
Lach Quen	138	164	26	17
Cua Lo	132	166	34	20
	Mean		∆ = 19 cm	<i>§</i> = 13%

Figure 3: The water elevation at CuaViet Station during typhoon KAEMI

Figure 4: The water elevation at NhatLe Station during typhoon KAEMI

Figure 5: Calculated storm surge elevation at Hondau station during typhoon VICENTE

Figure 6: The water elevation at Hondau and Cuaong station during typhoon JELAWAT

5. Contribution to AMY

Participate the IOP:

- Synoptic 8obs/day surface stations
- 6 weather radar stations: hourly observation
- Upper air radiosounding stations: 20bs/day
- 8 PILOT stations: 1 obs/day
- Research vessel: 2 campaigns/year
- Daily output of the operational forecasting HRM

6. Collaboration in MAHASRI

- Implementation of the technical transfer models, the software for the remote sensing data processing.
- 2. Data assimilation.
- 3. To improve the operational numerical models in NHMS of Vietnam
- 4. To improve HM forecasts, especially the forecasts of weather disturbances, particularly heavy rainfall events.
- 5. Capacity building

Thank you very much for your attention!