Global Water Resource Assessment Project -Validation of Global EPIC-

AGATA, Y. / Tan G.-X. / Kanae, S.

- 1. Previous Global Water Resource Assessment
- 2. Model Improvement Strategy
- 3. Agricultural Water Use Estimation by global EPIC
- 4. Comparison of EPIC result and previous statistics
- 5. Future Issues

Global Water Resource Assessment (previous) Mainstream : <u>0.5-degree</u> grid cells. IHP/UNESCO Shiklomanov, 2001 Univ. of New Hampshire, USA Vorosmarty et al., 2000 Kassel Univ., Germany Alcamo et al., 2000: Water Use Univ. of Tokyo Oki et al. (2001) : Using Advanced Estimation of River Discharge

Previous Method <a>O.5-degree grid cells

Water Supply

- GSWP (Global Soil Wetness Project) Result of 'runoff' from each cells (Monthly)
- River discharge estimation by TRIP (Total Runoff Integrating Pathways) and GSWP data

Previous Method [2]

Water Demand

- Base1 : WRI (World Resource Institute) water- use statistics of each countries
- Base2 : CIECIN global population data
- Industrial and Domestic(Urban) Water Use : Redistribute WRI country data so that values in every cells are proportional to population within that cell.

Domestic Water Use

Annual Domestic Water Withdrawal

[10⁶ m³/year/0.5°grid]

Industrial Water Use

Previous Method[3] Agricultural Water Use : Today's Topic Base: WRI country-based statistics How should we re-distribute this values? Proportional to Grid Irrigation Area? (Kassel Univ.) or to Grid Cropland Area? (WRI)

Previous Method [4]

- Estimation of Water Stress Distribution
- Symbols
 - R: Runoff from each cell
 - Q: River discharge
 - W: Total water demand(Indus.+Agri.+Domes.)
 - S: Freshwater production by desalinization
 - C: Population

(cont'd) ♦ Criteria

- Water demand per capita: W/C
- Withdrawal-to-Availability ratio: (W-S)/Q
 - >0.4 : severe water stress
 - <0.1 : safe</p>

ΣD: Sum of river water from upstream cells

(W-S)/Q, alpha=0.0

alpha=1.0

(cont'd) Sensitivity of alpha-index to water stress estimation

Change in population under water stress according to change in alpha

Model Strategy

Current : 'nearly static' model

- ---or merely 'calculation'
- Severe problem in future projection
 - Scenario-dependent
 - What if no data and/or projection available?
 - Unrealistic assumption

(cont'd)

To 'dynamic' model with as less external variables as possible

Sub-models

Climate change / River flow

Agriculture model

- Industrial water use model
- Urbanization model
- Environmental water demand estimation
- Linkage of all models
 - To be one of the goals of CREST project

Estimation by EPIC
Result : Monthly 0.1-degree grid estimation of maximum irrigation water demand

Annual Agricultural Water Withdrawal

Irrigation water demand from EPIC [10⁶ m³/year/0.5^ogrid] by Dr. Tan

Estimation by EPIC

1995

Annual Agricultural Water Withdrawal For Cropland [106 m3/year/0.50grid]

1995

Comparison Annual Total Agri. Water Demand EPIC: <u>8,971</u>*10⁹m³

- Two peaks in March and September
- WRI+Kassel Irrigation: 2,396 *109m³

(cont'd) New irrigation area dataset by Kassel Univ. is available

Old (currently used)

New

Future Issues

- Use of common dataset to drive each submodels
 - Climate, soil type, vegetation, river network, crop type etc.
 - Needs: Common data archive and uniform (standard) data format
- Determination of interface of each model
- Definition of 'available water'